Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1531-1541    DOI: 10.11900/0412.1961.2024.00031
  研究论文 本期目录 | 过刊浏览 |
低合金高强钢板贝/马复相回火过程硬度及微观组织的演变行为
鞠玉琳1(), 魏琪2, 袁志钟1, 程晓农1
1 江苏大学 材料科学与工程学院 镇江 212013
2 中国航空制造技术研究院 先进表面工程技术航空科技重点实验室/高能束流加工技术国家重点实验室 北京 100024
Hardness and Microstructural Evolution of Lower Bainite and Martensite Mixtures on Tempering of High-Strength Low-Alloy Steel Plates
JU Yulin1(), WEI Qi2, YUAN Zhizhong1, CHENG Xiaonong1
1 College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2 Aviation Key Laboratory of Science and Technology on Advanced Surface Engineering/ Science and Technology on Power Beam Process Laboratory, AVIC Manufacturing Technology Institute, Beijing 100024, China
引用本文:

鞠玉琳, 魏琪, 袁志钟, 程晓农. 低合金高强钢板贝/马复相回火过程硬度及微观组织的演变行为[J]. 金属学报, 2025, 61(10): 1531-1541.
Yulin JU, Qi WEI, Zhizhong YUAN, Xiaonong CHENG. Hardness and Microstructural Evolution of Lower Bainite and Martensite Mixtures on Tempering of High-Strength Low-Alloy Steel Plates[J]. Acta Metall Sin, 2025, 61(10): 1531-1541.

全文: PDF(4821 KB)   HTML
摘要: 

低合金高强钢板沿厚度方向优异的组织均匀性是良好强韧性的重要保证,理解贝/马复相的回火反应有助于调整低合金高强钢板的热处理工艺参数,实现超厚结构板的变形控制。本工作以贝/马复相的回火硬度和微观组织演变行为作为研究重点,并与单一马氏体和下贝氏体的回火行为进行了对比。结果表明,等温淬火贝/马复相的硬度与下贝氏体含量呈线性关系。短时间回火过程中,单一马氏体回火硬度最高,其次为贝/马复相,单一下贝氏体回火硬度最低,这与长时间回火硬度正好相反。短时间回火过程中,碳化物的粗化与回火硬度的降低息息相关,其中贝/马复相中马氏体和下贝氏体碳化物的粗化速率与单一马氏体和下贝氏体碳化物粗化速率分别保持一致;长时间回火过程中,贝/马复相板条和碳化物的粗化与单一下贝氏体更为相似。

关键词 低合金高强钢板贝/马复相回火硬度微观组织演变碳化物析出与粗化    
Abstract

Variations in lower bainite and martensite phase configurations through thickness play an important role in achieving an optimum combination of strength and toughness for thick high-strength low-alloy (HSLA) steel plates. A comprehensive understanding of the hardness and microstructural evolution of tempered lower bainite and martensite (LB/M) mixtures contributes to the adjustment of the quenching and tempering parameters to further control HSLA plate deformation during manufacturing. Therefore, this study focused on the tempering behavior of the mixed LB/M microstructure and compared this behavior with those of the singular martensite and lower bainite phases. Results have shown that the hardness of LB/M microstructures follows the rule of mixtures. Hardness declines from singular martensite to the LB/M microstructure and further decreases to singular lower bainite during short-term tempering, whereas an opposite hardness decreasing trend is observed during long-term tempering. Carbide coarsening leads to a decrease in hardness during short-term tempering, where the coarsening of martensitic and lower bainitic carbides in the LB/M microstructure is consistent with that of singular martensitic and bainitic carbides. Furthermore, the coarsening of laths and carbides in the LB/M mixture is similar to that in the singular lower bainitic microstructure for long-term tempering, where lower bainitic carbides are more stable than martensitic carbides.

Key wordsHSLA steel plate    the mixed lower bainite and martensite microstructure    tempered hardness    microstructural evolution    precipitation and coarsening of carbide
收稿日期: 2024-01-29     
ZTFLH:  TG156  
基金资助:国家自然科学基金项目(52203379)
通讯作者: 鞠玉琳,juyulin1990@ujs.edu.cn,主要从事钢铁材料组织控制与性能研究
作者简介: 鞠玉琳,女,1990年生,副教授,博士
图1  淬火和等温淬火过程中试样的相对长度变化曲线
图2  贝/马复相(LB/M)组织600 ℃回火硬度随下贝氏体(LB)体积分数的变化,及回火时间延长至100 h时单一马氏体(100%M)、贝/马复相(56%M + 44%LB)和单一下贝氏体(100%LB)回火硬度的变化
图3  100%M、LB/M (56%M + 44%LB)和100%LB试样显微组织的OM像
图4  100%LB、LB/M (56%M + 44%LB)和100%M试样的SEM像,及贝/马复相马氏体内自回火碳化物的形貌
图5  100%M和LB/M (56%M + 44%LB)试样中马氏体板条的尺寸分布,以及LB/M (56%M + 44%LB)和100%LB试样中下贝氏体碳化物的尺寸分布
图6  600 ℃回火16 h后100%M、LB/M (56%M + 44%LB)和100%LB试样的微观形貌以及板条边界椭圆形渗碳体
图7  600 ℃回火16 h后,100%M和LB/M (56%M + 44%LB)试样中马氏体碳化物的宽度和长度分布,以及100%LB和LB/M (56%M + 44%LB)试样中下贝氏体碳化物的宽度和长度分布
图8  600 ℃回火100 h后,100%M、LB/M (56%M + 44%LB)和100%LB试样的微观形貌
图9  600 ℃回火100 h后,LB/M (56%M + 44%LB)和100%LB试样中板条尺寸分布,以及100%M、LB/M (56%M + 44%LB)和100%LB试样中碳化物宽度和长度尺寸分布
图10  600 ℃回火100 h后,马氏体和下贝氏体内粗大碳化物的形貌、选定区域Mn和Mo元素的分布及碳化物的成分
XMartensitic carbideBainitic carbideParaequilibrium cementiteParaequilibrium M2C
Mn0.100.030.177.07
Mo0.050.020.0155.96
表1  马氏体和下贝氏体中粗大碳化物的成分比X / Fe (X = Mn、Mo)
[1] Chang Y F, Wang Z B, Zhao W Z. Development trend of low alloy high strength heavy and wide plate [J]. Steel, 2007, 42(8): 1
[1] 常跃峰, 王祖滨, 赵文忠. 低合金高强度宽厚钢板的发展趋势 [J]. 钢铁, 2007, 42(8): 1
[2] Zhao J F, Min Y A, Wu X C, et al. Effect of heat treatment on strength and toughness of S890 high strength steel [J]. Trans. Mater. Heat Treat., 2015, 36(5): 129
[2] 赵洁璠, 闵永安, 吴晓春 等. 不同热处理工艺对S890高强钢强韧性的影响 [J]. 材料热处理学报, 2015, 36(5): 129
[3] Kang J, Lu F, Wang Z D, et al. Study on quenching process of 960 MPa quenched and tempered steel plates for construction machinery [J]. J. Northeast. Univ. (Nat. Sci.), 2011, 32: 52
[3] 康 健, 卢 峰, 王昭东 等. 工程机械用960MPa级调质钢板的淬火工艺研究 [J]. 东北大学学报(自然科学版), 2011, 32: 52
[4] Toji Y, Matsuda H, Raabe D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite [J]. Acta Mater., 2016, 116: 250
[5] Jiang Z H, Li Y H, Yang Z D, et al. The tempering behavior of martensite/austenite islands on the mechanical properties of a low alloy Mn-Ni-Mo steel with granular bainite [J]. Mater. Today Commun., 2021, 26: 102166
[6] Zhao Y T, Lu H T, Wang Y F, et al. Morphologies of martensite and bainite in different steels [J]. J. Iron Steel Res., 2018, 30: 922
[6] 赵勇桃, 鲁海涛, 王玉峰 等. 不同钢中马氏体与贝氏体组织形貌 [J]. 钢铁研究学报, 2018, 30: 922
doi: 10. 13228/j.boyuan.issn1001- 0963. 20180055
[7] Liu D Y, Xu H, Yang K, et al. Effect of bainite/martensite mixed microstructure on the strength and toughness of low carbon alloy steels [J]. Acta Metall. Sin., 2004, 40: 882
[7] 刘东雨, 徐 鸿, 杨 昆 等. 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响 [J]. 金属学报, 2004, 40: 882
[8] Fang H S, Liu D Y, Chang K D, et al. Microstructure and properties of 1500 MPa economical bainite/martensite duplex phase steel [J]. J. Iron Steel Res., 2001, 13(3): 31
[8] 方鸿生, 刘东雨, 常开地 等. 1500 MPa级经济型贝氏体/马氏体复相钢的组织与性能 [J]. 钢铁研究学报, 2001, 13(3): 31
[9] Yuan Z Z, Chen L, Zhang B C, et al. Heat treatment technologies for toughening of cold working die steel DC53 [J]. Heat Treat. Met., 2023, 48(10): 15
[9] 袁志钟, 陈 露, 张伯承 等. 冷作模具钢DC53热处理增韧技术 [J]. 金属热处理, 2023, 48(10): 15
[10] Yuan Z Z, Wang M F, Zhang B C, et al. Heat treatment for toughening technology of cold working die steel SKD11 [J]. Heat Treat. Met., 2023, 48(9): 1
doi: 10.13251/j.issn.0254-6051.2023.09.001
[10] 袁志钟, 王梦飞, 张伯承 等. 冷作模具钢SKD11的热处理增韧技术 [J]. 金属热处理, 2023, 48(9): 1
doi: 10.13251/j.issn.0254-6051.2023.09.001
[11] Caballero F G, Miller M K, Garcia-Mateo C. Influence of transformation temperature on carbide precipitation sequence during lower bainite formation [J]. Mater. Chem. Phys., 2014, 146: 50
[12] Tomita Y. Effect of martensite morphology on mechanical properties of low alloy steels having mixed structure of martensite and lower bainite [J]. Mater. Sci. Tech., 1991, 7: 299
[13] Ju Y L, Goodall A, Strangwood M, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q&T steels during the early stages of tempering [J]. Mater. Sci. Eng., 2018, A738: 174
[14] Thomson R C, Bhadeshia H K D H. Changes in chemical composition of carbides in 2.25Cr-1Mo power plant steel [J]. Mater. Sci. Tech., 1994, 10: 193
[15] Thomson R C, Bhadeshia H K D H. Changes in chemical composition of carbides in 2.25Cr-1Mo power plant steel [J]. Mater. Sci. Tech., 1994, 10: 205
[16] Zhou L, Shen G X, Xu J. Study on the martensite and lower bainite composite structure of medium carbon low alloy steel [J]. Shanghai Met., 1988, 10(4): 36
[16] 周 莲, 沈国兴, 徐 杰. 中碳低合金钢的马氏体与下贝氏体复相组织研究 [J]. 上海金属, 1988, 10(4): 36
[17] Lin H C. Strengthening and toughening of Cr12 steel with martensite/bainite duplex treatment and its application [J]. Heat Treat. Met., 1997, (5): 11
[17] 林化春. Cr12钢马氏体-贝氏体复相处理强韧化及应用 [J]. 金属热处理, 1997, (5): 11
[18] Bhadeshia H K D H. Bainite in Steels: Theory and Practice [M]. 3rd Ed., London: CRC Press, 2015: 12
[19] Tomita Y, Okabayashi K. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel [J]. Metall. Trans., 1983, 14A: 2387
[20] Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite [J]. Metall. Trans., 1983, 14A: 485
[21] Yang F B, Bai B Z, Liu D Y, et al. Microstructure and properties of a carbide-free bainite/martensite ultra-high strength steel [J]. Acta Metall. Sin., 2004, 40: 296
[21] 杨福宝, 白秉哲, 刘东雨 等. 无碳化物贝氏体马氏体复相高强度钢的组织与性能 [J]. 金属学报, 2004, 40: 296
[22] Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite [J]. Mater. Sci. Tech., 1994, 10: 209
[23] Jain D, Isheim D, Seidman D N. Carbon redistribution and carbide precipitation in a high-strength low-carbon HSLA-115 steel studied on a nanoscale by atom probe tomography [J]. Metall. Mater. Trans., 2017, 4A: 3205
[24] Mishra S K, Das S, Ranganathan S. Precipitation in high strength low alloy (HSLA) steel: A TEM study [J]. Mater. Sci. Eng., 2002, A323: 285
[25] Ju Y L, Davis C, Strangwood M. Simulation of coarsening of inter-lath cementite in a Q&T steel during tempering [J]. Mater. Sci. Technol., 2020, 36: 1440
[26] Wang F, Qian D, Mao H, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9: 6712
[27] Li Y C, Cheng X N, Luo R, et al. Effect of thermal fatigue on microstructure and mechanical properties of B/M multiphase H13 steel. Heat Treat. Met., 2020, 45(8): 17
[27] 李洋城, 程晓农, 罗 锐 等. 热疲劳对B/M复相H13钢组织及力学性能的影响[J]. 金属热处理, 2020, 45(8): 17
[28] Ning D, Dai C R, Wu J L, et al. Carbide precipitation and coarsening kinetics in low carbon and low alloy steel during quenching and subsequently tempering [J]. Mater. Charact., 2021, 176: 111111
[29] Hou Z, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel [J]. J. Mater. Sci., 2019, 54: 9222
[30] Clarke A J, Miller M K, Field R D, et al. Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel [J]. Acta Mater., 2014, 77: 17
[1] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[2] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[3] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[4] 王敏婷; 杜凤山; 李学通; 郑炀曾 . 楔横轧轴类件热变形时奥氏体微观组织演变的预测[J]. 金属学报, 2005, 41(2): 118-122 .
[5] 赵九洲; 胡壮麒 . 偏晶合金液--液相变过程模拟[J]. 金属学报, 2004, 40(1): 27-30 .