Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1183-1192    DOI: 10.11900/0412.1961.2023.00414
  研究论文 本期目录 | 过刊浏览 |
热压温度对TC4合金扩散连接区组织与性能的影响
张洺川1,2, 徐勤思2(), 刘意1, 蔡雨升1(), 牟义强2, 任德春1, 吉海宾1, 雷家峰1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.沈阳航空航天大学 民用航空学院 沈阳 110136
Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy
ZHANG Mingchuan1,2, XU Qinsi2(), LIU Yi1, CAI Yusheng1(), MU Yiqiang2, REN Dechun1, JI Haibin1, LEI Jiafeng1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
Mingchuan ZHANG, Qinsi XU, Yi LIU, Yusheng CAI, Yiqiang MU, Dechun REN, Haibin JI, Jiafeng LEI. Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy[J]. Acta Metall Sin, 2025, 61(8): 1183-1192.

全文: PDF(4065 KB)   HTML
摘要: 

扩散连接技术在航空航天等领域精密、复杂结构部件的生产中受到越来越多的关注,连接温度是影响部件扩散连接后使用性能的关键因素。本工作采用热压工艺制备了TC4钛合金扩散连接样品,研究了热压温度对扩散连接区显微组织、力学性能及断裂机理的影响规律。结果表明,热压过程中扩散连接界面处的合金会发生动态再结晶,温度较低时,在扩散界面处再结晶形成细小α相,随着热压温度的升高,界面处的α相逐渐粗化;动态再结晶形成的α相与合金内部非扩散区α相的尺寸存在较大差异,由此产生的晶体学失配现象会显著降低扩散界面的性能,导致热压后的合金均在扩散区发生断裂,合金延伸率较低。热处理后扩散区的组织由初生α (αp)相、针状次生α (αs)相和少量β相组成,随连接温度的升高,α相的尺寸逐渐增大,界面处的晶体学失配得到改善,界面迁移程度增加,合金的抗拉强度提高到998.7 MPa,延伸率提高到17.5%,达到扩散连接前TC4钛合金的性能。

关键词 TC4钛合金扩散连接动态再结晶晶体学失配热处理    
Abstract

Diffusion bonding has been gaining increasing attention in the manufacturing of precise and intricate structural components in aerospace and other industries. The bonding temperature is a critical factor that affects the performance of the parts produced by diffusion bonding. This study explores the impact of hot-pressing temperature on the microstructure, mechanical properties, and fracture mechanism of TC4 titanium alloy joints formed through diffusion bonding. Samples were prepared using a hot-pressing technique. The findings reveal that dynamic recrystallization occurs at the diffusion bonding interface during the process. At lower temperatures, this recrystallization results in the formation of a fine α-phase at the interface. As the hot-pressing temperature increases, the α-phase progressively coarsens. Notably, there is a substantial disparity between the size of the α-phase formed through dynamic recrystallization at the interface and that in the nondiffusion zone of the base material, leading to a crystallographic mismatch. This mismatch substantially reduces the properties at the diffusion interface and consequently leads to fracture in the diffusion-bonded joints within the bonding zone after hot pressing. In the post-heat treatment, the diffusion zone consists of primary α (αp) phase, needle-like secondary α (αs) phase, and β phase. Elevating the bonding temperature gradually increases the size of the α phase, thereby improving the crystallographic match at the bonding interface and facilitating interface migration. After the heat treatment at 970 oC, the tensile strength and elongation of the 950 oC diffusion-bonded TC4 Alloy joints were measured at 998.7 MPa and 17.5%, respectively, achieving the performance levels of the alloy before diffusion bonding.

Key wordsTC4 titanium alloy    diffusion bonding    dynamic recrystallization    crystallographic mismatch    heat treatment
收稿日期: 2023-10-18     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52205431);工信部民机专项项目(MJZ 2-2N21-5)
通讯作者: 蔡雨升,yscai@imr.ac.cn,主要从事钛合金材料研究;
徐勤思,xqs@sau.edu.cn,主要从事钛合金材料研究
Corresponding author: CAI Yusheng, associate professor, Tel: (024)83970131, E-mail: yscai@imr.ac.cn;
作者简介: 张洺川,男,1998年生,硕士生
图1  钛合金扩散连接面形貌、扩散连接过程示意图及拉伸实验取样示意图
图2  TC4钛合金棒材的显微组织
图3  不同热压温度下扩散连接接头显微组织的SEM像
图4  不同热压温度下扩散连接区的SEM像和元素分布情况
图5  钛合金棒材热压扩散过程组织演化规律示意图
图6  不同热压温度下扩散连接钛合金的力学性能
图7  不同热压温度下扩散连接钛合金的拉伸断口形貌
图8  拉伸过程中位错在不同尺寸α相中的分布示意图
图9  扩散连接区经热处理后显微组织的SEM像
图10  扩散连接钛合金经热处理后的力学性能
图11  热处理后扩散连接钛合金拉伸断口形貌
[1] Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
[1] 杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
[2] Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
[2] 黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
[3] Ren D C, Su H H, Zhang H B, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy [J]. Acta Metall. Sin., 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
[3] 任德春, 苏虎虎, 张慧博 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 [J]. 金属学报, 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
[4] Li X F, Li T L, An D Y, et al. Research progress of titanium alloys and their diffusion bonding fatigue characteristics [J]. Acta Metall. Sin., 2022, 58: 473
doi: 10.11900/0412.1961.2021.00548
[4] 李细锋, 李天乐, 安大勇 等. 钛合金及其扩散焊疲劳特性研究进展 [J]. 金属学报, 2022, 58: 473
doi: 10.11900/0412.1961.2021.00548
[5] He P, Feng J C, Han J C, et al. Advances in TiAl intermetallics and its joining technology (Part Ⅱ) [J]. Trans. China Weld. Ins., 2002, 23(5): 91
[5] 何 鹏, 冯吉才, 韩杰才 等. TiAl金属间化合物及其连接技术的研究进展 [J]. 焊接学报, 2002, 23(5): 91
[6] Zhang C C, Zhang T C, Ji Y J, et al. Microstructure evolution and super-diffusion mechanism of weld zone of dissimilar titanium alloys after linear friction welding [J]. Rare Met. Mater. Eng., 2023, 52: 834
[6] 张传臣, 张田仓, 季亚娟 等. 异种钛合金线性摩擦焊组织演变及超扩散机理(英文) [J]. 稀有金属材料与工程, 2023, 52: 834
[7] Zhang H, Li J L, Ma P Y, et al. Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint [J]. Vacuum, 2018, 152: 272
[8] Zhao Z C, Xu J H, Fu Y C, et al. An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation [J]. Chin. J. Aeronaut., 2018, 31: 178
[9] Ferguson B, Ramulu M. Surface tracking of diffusion bonding void closure and its application to titanium alloys [J]. Int. J. Mater. Form., 2020, 13: 517
doi: 10.1007/s12289-019-01489-0
[10] Gao Y P, Wang Y, Wang D P, et al. Microstructure and mechanical properties of diffusion bonded TC11 alloy joint [J]. Rare Met. Mater. Eng., 2023, 52: 770
[10] 高云鹏, 王 颖, 王东坡 等. TC11钛合金扩散连接接头组织及力学性能研究 [J]. 稀有金属材料与工程, 2023, 52: 770
[11] Ma R F, Li M Q, Li H, et al. Modeling of void closure in diffusion bonding process based on dynamic conditions [J]. Sci. China Technol. Sci., 2012, 55: 2420
[12] Zou J T, Gao L, Xie T F, et al. Interfacial microstructure and shear strength of Cu/Al bimetal fabricated by diffusion welding [J]. Rare Met. Mater. Eng., 2020, 49: 4121
[12] 邹军涛, 高 磊, 谢庭芳 等. 扩散连接制备Cu/Al双金属及其界面组织与剪切强度(英文) [J]. 稀有金属材料与工程, 2020, 49: 4121
[13] Sharma G, Dwivedi D K. Diffusion bonding of pre-friction treated structural steel with reversion of deformation induced grains [J]. Mater. Sci. Eng., 2017, A696: 393
[14] He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
[14] 和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
[15] Cheng M, Lu Z G, Wu J, et al. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98: 177
doi: 10.1016/j.jmst.2021.04.066
[16] Cai C, Song B, Xue P J, et al. Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties [J]. J. Alloys Compd., 2016, 686: 55
[17] Chen S D, Ke F J, Zhou M, et al. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al [J]. Acta Mater., 2007, 55: 3169
[18] Gao W J, Xing S M, Lei J X. Effect of bonding temperature and holding time on properties of hollow structure diffusion bonded joints of TC4 alloy [J]. SN Appl. Sci., 2020, 2: 1960
[19] Shi C C, Lu Z, Zhang K F, et al. Microstructure evolution and mechanical properties of γ-TiAl honeycomb structure fabricated by isothermal forging and pulse current assisted diffusion bonding [J]. Intermetallics, 2018, 99: 59
[20] Liu T, Leazer J D, Brewer L N. Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles [J]. Acta Mater., 2019, 168: 13
[21] Xiong J T, Peng Y, Samiuddin M, et al. Common mechanical properties of diffusion bonded joints and their corresponding microstructure features [J]. J. Mater. Eng. Perform., 2020, 29: 3277
[22] Wei J K, Feng B, Ishikawa R, et al. Direct imaging of atomistic grain boundary migration [J]. Nat. Mater., 2021, 20: 951
doi: 10.1038/s41563-020-00879-z pmid: 33432148
[23] Shen Z, Arioka K, Lozano-Perez S. A study on the diffusion-induced grain boundary migration ahead of stress corrosion cracking crack tips through advanced characterization [J]. Corros. Sci., 2021, 183: 109328
[24] Beke D L, Kaganovskii Y, Katona G L. Interdiffusion along grain boundaries—Diffusion induced grain boundary migration, low temperature homogenization and reactions in nanostructured thin films [J]. Prog. Mater. Sci., 2018, 98: 625
[25] Liu X, Xu L, Zhang S. Molecular dynamics simulation of Ti-6Al-4V diffusion bonding behavior under different process parameters [J]. Mater. Tehnol., 2020, 54: 365
[26] Liu X G, Zhang S, Li B Y, et al. Molecular dynamics simulation of TC4 aging phase transition and diffusion bonding [J]. Rare Met. Mater. Eng., 2018, 47: 3045
[26] 刘小刚, 张 顺, 李百洋 等. TC4时效相变及扩散连接的分子动力学模拟 [J]. 稀有金属材料与工程, 2018, 47: 3045
[27] Zhao Y, Xie B J, Zhang J L, et al. Effects of surface roughness on interface bonding performance for 316H stainless steel in hot-compression bonding [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 771
[28] Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
[29] Kondo S, Mitsuma T, Shibata N, et al. Direct observation of individual dislocation interaction processes with grain boundaries [J]. Sci. Adv., 2016, 2: e1501926
[30] Zhang J Y, Xu B, ul Haq Tariq N, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys [J]. J. Mater. Sci. Technol., 2020, 40: 54
doi: 10.1016/j.jmst.2019.08.044
[31] Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Mater., 2019, 10: 156
[32] Liu H X, Wang Y J, Liu F, et al. Effect of solution aging treatment on microstructure and properties of 7A52 aluminum alloy CMT + P welded joint [J]. Rare Met. Mater. Eng., 2023, 52: 1905
[32] 刘洪旭, 王艳杰, 刘 峰 等. 固溶时效处理对7A52铝合金CMT + P焊接接头组织及性能的影响 [J]. 稀有金属材料与工程, 2023, 52: 1905
[33] Ding C, Wang C L, Li F, et al. Effects of solid solution, cooling rates and aging treatments on microstructure and mechanical properties of TC4-DT alloy [J]. Rare Met. Mater. Eng., 2020, 49: 962
[33] 丁 灿, 汪常亮, 李 峰 等. 固溶-冷速-时效对TC4-DT合金显微组织和力学性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 962
[34] Zhao Z, Chen J, Guo S, et al. Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti-6Al-4V titanium alloy [J]. J. Mater. Sci. Technol., 2017, 33: 675
[35] Zhang H, Li J L, Ma P Y, et al. Effect of grain boundary migration on impact toughness of 316L diffusion bonding joints [J]. Mater. Res. Express, 2019, 6: 076535
[1] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[2] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[3] 赵焯雅, 孟令健, 林鹏, 曹晓卿. TC4钛合金跨相区连续热压缩 α 相组织演变规律及织构形成机理[J]. 金属学报, 2025, 61(5): 717-730.
[4] 包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
[5] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[6] 唐丽婷, 郭倩颖, 李冲, 丁然, 刘永长. Allvac 718Plus高温合金第二相演变与性能研究进展[J]. 金属学报, 2025, 61(1): 43-58.
[7] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[8] 刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
[9] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[10] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[11] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[12] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[13] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[14] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[15] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.