Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 744-756    DOI: 10.11900/0412.1961.2023.00252
  研究论文 本期目录 | 过刊浏览 |
Inconel 740H焊接接头不同温度蠕变后 γ贫化区的形成及其对力学性能的影响
周任远1(), 朱丽慧2
1 常州工学院 航空与机械工程学院 常州 213031
2 上海大学 材料科学与工程学院 上海 200444
Formation of γ′-Denuded Zone and Its Effect on the Mechanical Properties of Inconel 740H Welded Joint After Creep at Different Temperatures
ZHOU Renyuan1(), ZHU Lihui2
1 School of Aerospace and Mechanical Engineering, Changzhou Institute of Technology, Changzhou 213031, China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

周任远, 朱丽慧. Inconel 740H焊接接头不同温度蠕变后 γ贫化区的形成及其对力学性能的影响[J]. 金属学报, 2025, 61(5): 744-756.
Renyuan ZHOU, Lihui ZHU. Formation of γ′-Denuded Zone and Its Effect on the Mechanical Properties of Inconel 740H Welded Joint After Creep at Different Temperatures[J]. Acta Metall Sin, 2025, 61(5): 744-756.

全文: PDF(5505 KB)   HTML
摘要: 

Inconel 740H是应用于先进超超临界火电机组的最佳候选材料之一,进一步提高其焊接接头的力学性能不仅有利于火电厂的安全运行,还能显著提高经济性。本工作采用OM、SEM和TEM系统地研究了Inconel 740H焊接接头不同温度蠕变后γ′贫化区的形成机理,并分析了其对力学性能的影响。结果表明,焊后热处理过程中小尺寸棒状γ′相仅在焊缝组织的晶界上不连续析出。不同温度蠕变后,焊缝内晶界比母材更早形成粗大棒状γ′相和γ′贫化区。其中,母材内晶界处粗大棒状γ′相的形成是由其晶界附近颗粒状γ′相的不连续粗化所致,而焊缝内晶界处粗大棒状γ′相的形成是由其晶界处不连续析出的棒状γ′相和晶界附近颗粒状γ′相2者的不连续粗化所致。晶界棒状γ′相的不连续粗化和M23C6相的析出导致晶界处形成γ′贫化区。700~800 ℃范围内,随蠕变温度的提高和蠕变时间的延长,焊缝内晶界棒状γ′相的尺寸和γ′贫化区的宽度增大,而棒状γ′相的数量随蠕变温度的提高先略有减少后增多。晶内颗粒状γ′相是影响IN 740H焊接接头硬度的主要因素。晶界棒状γ′相的不连续粗化与γ′贫化区的形成不仅会降低硬度,还会降低蠕变断裂强度。

关键词 Inconel 740H蠕变焊接接头显微组织γ′相    
Abstract

In recent years, advanced ultra-supercritical (A-USC) power plants have developed rapidly to increase the thermal efficiency and decrease CO2 emission. Inconel 740H (IN 740H) is one of the Ni-based superalloys with the highest creep strength and good corrosion resistance at elevated temperatures. Owing to its excellent comprehensive properties, IN 740H is considered one of the best candidate materials for superheater and reheater in A-USC power plants. Further improving the mechanical properties of IN 740H welded joint enhances the safety and economic viability of the power plants. In this study, IN 740H tubes were welded by multipass tungsten inert gas hot-wire welding followed by a post weld heat treatment (PWHT) at 800 oC for 5 h. The formation mechanism of the γ′-denuded zone in the IN 740H welded joint after creep at different temperatures was systematically investigated using OM, SEM, and TEM, and its effect on the mechanical properties was analyzed.Results show that the small rod-like γ′ phase only discontinuously precipitates at grain boundaries in the weld metal during PWHT. After creep at different temperatures, an earlier formation of a coarse rod-like γ′ phase and γ′-denuded zone is observed at grain boundaries in the weld metal than in the base metal. The formation of the coarse rod-like γ′ phase at grain boundaries in the base metal results from the discontinuous coarsening of the spherical γ′ phase near grain boundaries, whereas that in the weld metal results from the discontinuous coarsening of the discontinuously precipitated rod-like γ′ phase at the grain boundaries and spherical γ′ phase near the grain boundaries. The discontinuous coarsening of the rod-like γ′ phase and precipitation of M23C6 carbides at grain boundaries lead to the formation of the γ′-denuded zone. Increasing the creep temperature and creep time when the temperature is in the range of 700-800 oC increases the size of the rod-like γ′ phase and width of the γ′-denuded zone at grain boundaries, whereas the number of rod-like γ′ phase initially decreases and then increases with the increase of creep temperature. The spherical γ′ phase in the grain interiors plays a vital role in changing the hardness of the IN 740H welded joint. The discontinuous coarsening of the γ′ phase and the formation of the γ′-denuded zone at the grain boundaries not only decrease the hardness, but also deteriorate the creep rupture strength of the IN 740H welded joint. Controlling the discontinuous coarsening of the rod-like γ′ phase at grain boundaries, suppressing the formation of the γ′-denuded zone, and controlling the growth of the spherical γ′ phase in the grain interiors are necessary to improve the mechanical properties of the IN 740H welded joint.

Key wordsInconel 740H    creep    welded joint    microstructure    γ′ phase
收稿日期: 2023-06-09     
ZTFLH:  TG132.3  
基金资助:国家重点研发计划项目(2016YFC0801904)
通讯作者: 周任远,zhoury@czu.cn,主要从事耐热钢及耐热合金方面的研究
Corresponding author: ZHOU Renyuan, Tel: 18801911260, E-mail: zhoury@czu.cn
作者简介: 周任远,男,1991年生,博士
Welding layer

Voltage

V

Current

A

Welding speed mm·min-1
110.2240190
211.8255280
311.6228200
表1  Inconel 740H (IN 740H)管焊接工艺参数
图1  蠕变断裂试样的取样位置及尺寸示意图
图2  显微组织观察的取样位置示意图
SpecimenTemperature oCStressMPaRupture time / hRupture location
700-1700405218Weld metal
700-23242048Weld metal
750-17502651264Base metal
750-22202999Weld metal
800-1800250135Weld metal
800-22011093Weld metal
表2  IN 740H焊接接头的参数及蠕变实验结果
图3  蠕变前和不同温度蠕变后IN 740H焊接接头的Vickers硬度
图4  蠕变前和不同温度蠕变后IN 740H焊接接头的OM像
图5  蠕变前和700 ℃蠕变后(试样700-2) IN 740H焊接接头的TEM像
图6  蠕变前IN 740H焊接接头显微组织的SEM像
图7  700 ℃蠕变断裂后IN 740H焊接接头的SEM像
图8  750 ℃蠕变断裂后IN 740H焊接接头的SEM像
图9  800 ℃蠕变断裂后IN 740H焊接接头的SEM像
图10  不同温度蠕变后IN 740H焊缝组织的晶界棒状γ′相和γ′贫化区的形成示意图
图11  蠕变前和不同温度蠕变后IN 740H焊接接头晶内颗粒状γ′相的统计结果
图12  IN 740H焊接接头晶内颗粒状γ′相的析出强化应力
1 Singh P, Arora N, Sharma A. Enhancing mechanical properties and creep performance of 304H and Inconel 617 superalloy dissimilar welds for advanced ultra super critical power plants [J]. Int. J. Press. Vessels Pip., 2023, 201: 104882
2 Bechetti D H, DuPont J N, de Barbadillo J J, et al. Microstructural evolution of INCONEL® alloy 740H® fusion welds during creep [J]. Metall. Mater. Trans., 2015, 46A: 739
3 Viswanathan R, Henry J F, Tanzosh J, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. J. Mater. Eng. Perform., 2005, 14: 281
4 Kim D M, Kim C, Yang C H, et al. Heat treatment design of Inconel 740H superalloy for microstructure stability and enhanced creep properties [J]. J. Alloys Compd., 2023, 946: 169341
5 Evans N D, Maziasz P J, Swindeman R W, et al. Microstructure and phase stability in Inconel alloy 740 during creep [J]. Scr. Mater., 2004, 51: 503
6 Shingledecker J, deBarbadillo J J, Gollihue R, et al. Development and performance of INCONEL® alloy 740H® seam-welded piping [J]. Int. J. Press. Vessels Pip., 2023, 202: 104875
7 Render M, Santella M L, Chen X, et al. Long-term creep-rupture behavior of alloy Inconel 740/740H [J]. Metall. Mater. Trans., 2021, 52A: 2601
8 Shin K Y, Lee J W, Han J M, et al. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel [J]. Mater. Charact., 2018, 139: 144
9 Shingledecker J P, Pharr G M. The role of eta phase formation on the creep strength and ductility of Inconel alloy 740 at 1023 K (750 oC) [J]. Metall. Mater. Trans., 2012, 43A: 1902
10 Brittan A M, Mahaffey J, Anderson M, et al. Effect of supercritical CO2 on the performance of 740H fusion welds [J]. Mater. Sci. Eng., 2019, A742: 414
11 Guo Y, Li T J, Wang C X, et al. Microstructure and phase precipitate behavior of Inconel 740H during aging [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1598
12 Chong Y, Liu Z D, Godfrey A, et al. Microstructure evolution and mechanical properties of Inconel 740H during aging at 750 oC [J]. Mater. Sci. Eng., 2014, A589: 153
13 Yin H F, Gao Y M, Gu Y F. Evolution of the microstructure and microhardness of the welding joint of IN 740H alloy with IN 617 as filler metal [J]. Mater. Charact., 2017, 127: 288
14 Bechetti D H, Dupont J N, Watanabe M, et al. Characterization of discontinuous coarsening reaction products in INCONEL® alloy 740H® fusion welds [J]. Metall. Mater. Trans., 2017, 48A: 1727
15 Williams D B, Butler E P. Grain boundary discontinuous precipitation reactions [J]. Int. Met. Rev., 1981, 26: 153
16 Porter D A, Easterling K E. Phase Transformations in Metals and Alloys [M]. 2nd Ed., Boca Raton: CRC Press, 1992: 322
17 Xie X S, Zhao S Q, Dong J X, et al. Structural stability and improvement of Inconel alloy 740 for ultra supercritical power plants [J]. J. Chin. Soc. Power Eng., 2011, 31: 638
17 谢锡善, 赵双群, 董建新 等. 超超临界电站用Inconel 740镍基合金的组织稳定性及其改型研究 [J]. 动力工程学报, 2011, 31: 638
18 Sklenička V, Kuchařová K, Svoboda M, et al. Creep behaviour of IN 740 alloy after HAZ thermal cycle simulations [J]. Int. J. Press. Vessels Pip., 2019, 178: 104000
19 Gronsky R, Thomas G. Discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloys [J]. Acta Metall., 1975, 23: 1163
20 Fournelle R A. Discontinuous coarsening of lamellar cellular precipitate in an austenitic Fe-30 wt.%Ni-6 wt.%Ti alloy-I. Morphology [J]. Acta Metall., 1979, 27: 1135
21 Manna I, Pabi S K, Gust W. Discontinuous reactions in solids [J]. Int. Mater. Rev., 2001, 46: 53
22 Fedoseeva A, Nikitin I, Dudova N, et al. Coarsening of Laves phase and creep behaviour of a Re-containing 10%Cr-3%Co-3%W steel [J]. Mater. Sci. Eng., 2021, A812: 141137
23 Guo Z K, Jie J C, Liu S C, et al. Suppression of discontinuous precipitation in age-hardening Cu-15Ni-8Sn alloy by addition of V [J]. J. Alloys Compd., 2020, 813: 152229
24 Fang J Y C, Liu W H, Luan J H, et al. Competition between continuous and discontinuous precipitation in L12-strengthened high-entropy alloys [J]. Intermetallics, 2022, 149: 107655
25 Perez M, Dumont M, Acevedo-Reyes D. Implementation of classical nucleation and growth theories for precipitation [J]. Acta Mater., 2008, 56: 2119
26 Funkenbusch A W. Discontinuous γ′ coarsening in a Ni-Al-Mo base superalloy [J]. Metall. Trans., 1983, 14A: 1283
27 Manna I, Jha J N, Pabi S K. Kinetics of discontinuous precipitation in a Zn-2.5at%Cu alloy [J]. J. Mater. Sci., 1995, 30: 1449
28 Rao K B, Seetharaman V, Mannan S L, et al. Precipitation, deformation and fracture behaviour of a thermomechanically processed Nimonic PE 16 superalloy [J]. J. Nucl. Mater., 1981, 102: 7
29 Partridge A, Noble F W, Tatlock G J. The effects of long-term ageing on Nimonic PE16 [J]. J. Nucl. Mater., 1992, 186: 100
30 Olalla V C, Bliznuk V, Sanchez N, et al. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters [J]. Mater. Sci. Eng., 2014, A604: 46
[1] 李新宇, 白佳铭, 张浩鹏, 李晓鲲, 贾建, 刘常升, 刘建涛, 张义文. 先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为[J]. 金属学报, 2025, 61(5): 757-769.
[2] 张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
[3] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[4] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[5] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[6] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[7] 王峰, 白盛巍, 王志, 杜旭东, 周乐, 毛萍莉, 魏子淇, 李瑾伟. Mg-Zn系合金热裂行为的研究进展[J]. 金属学报, 2024, 60(6): 743-759.
[8] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[9] 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
[10] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[11] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[12] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[13] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[14] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[15] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.