|
|
一种新型Ti-Al-Mn-Nb合金的固态相变行为 |
王强1,2, 李小兵2, 郝俊杰2, 陈波2, 张滨2( ), 张二林1, 刘奎2 |
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2 季华实验室 佛山 528200 |
|
Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy |
WANG Qiang1,2, LI Xiaobing2, HAO Junjie2, CHEN Bo2, ZHANG Bin2( ), ZHANG Erlin1, LIU Kui2 |
1 Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Ji Hua Laboratory, Foshan 528200, China |
引用本文:
王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
Qiang WANG,
Xiaobing LI,
Junjie HAO,
Bo CHEN,
Bin ZHANG,
Erlin ZHANG,
Kui LIU.
Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. Acta Metall Sin, 2025, 61(7): 1060-1070.
1 |
Drossou-Agakidou V, Kanakoudi-Tsakalidou F, Sarafidis K, et al. Administration of recombinant human granulocyte-colony stimulating factor to septic neonates induces neutrophilia and enhances the neutrophil respiratory burst and β2 integrin expression Results of a randomized controlled trial [J]. Eur. J. Pediatr., 1998, 157: 583
pmid: 9686822
|
2 |
Djanarthany S, Viala J C, Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl [J]. Mater. Chem. Phys., 2001, 72: 301
|
3 |
Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, A263: 281
|
4 |
Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J]. JOM, 2018, 70: 553
|
5 |
Fang H Z, Wang S, Chen R R, et al. The effects of the formation of a multi-scale reinforcing phase on the microstructure evolution and mechanical properties of a Ti2AlC/TiAl alloy [J]. Nanoscale, 2021, 13: 12565
|
6 |
Xu H, Li X B, Xing W W, et al. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy [J]. J. Mater. Sci. Technol., 2019, 35: 2652
doi: 10.1016/j.jmst.2019.05.061
|
7 |
Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying tial alloys with adjustable β/B2-phase fraction and excellent hot-workability [J]. Adv. Eng. Mater., 2008, 10: 707
|
8 |
Zeng S W, Zhao A M, Luo L, et al. Development of β-solidifying γ-TiAl alloys sheet [J]. Mater. Lett., 2017, 198: 31
|
9 |
Semiatin S L, Shanahan B W, Meisenkothen F. Hot rolling of gamma titanium aluminide foil [J]. Acta Mater., 2010, 58: 4446
|
10 |
Varma S K, Mahapatra R, Hernandez C, et al. Influence of processing on microstructures of Ti-44Al-llNb alloy [J]. Mater. Manuf. Processes, 1999, 14: 821
|
11 |
Dong C L, Jiao Z H, Yu H C, et al. Effect of dwell condition on fatigue behavior of a high-Nb TiAl alloy at 750 oC [J]. Intermetallics, 2017, 91: 1
|
12 |
Liang Z Q, Xiao S L, Li Q C, et al. Creep behavior and related phase precipitation of a creep-resistant Y2O3-bearing high Nb containing TiAl alloy [J]. Mater. Charact., 2023, 198: 112767
|
13 |
Liu Y, Li J S, Tang B, et al. Decomposition and phase transformation mechanisms of α2 lamellae in β-solidified γ-TiAl alloys [J]. Acta Mater., 2023, 242: 118492
|
14 |
Ballor J, Li T, Prima F, et al. A review of the metastable omega phase in beta titanium alloys: The phase transformation mechanisms and its effect on mechanical properties [J]. Int. Mater. Rev., 2023, 68: 26
|
15 |
Guo X, Song L, Liu X, et al. In-situ synchrotron HEXRD study on the phase transformation mechanisms of the ω-related phases in a Ti4Al3Nb alloy [J]. Mater. Charact., 2023, 200: 112901
|
16 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
16 |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
17 |
Kainuma R, Fujita Y, Mitsui H, et al. Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys [J]. Intermetallics, 2000, 8: 855
|
18 |
Genc O, Unal R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review [J]. J. Alloys Compd., 2022, 929: 167262
|
19 |
Duan B H, Yang Y C, He S Y, et al. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations [J]. J. Alloys Compd., 2022, 909: 164811
|
20 |
Song L, Lin J P, Li J S. Effects of trace alloying elements on the phase transformation behaviors of ordered ω phases in high Nb-TiAl alloys [J]. Mater. Des., 2017, 113: 47
|
21 |
Zhao P X, Li X B, Xing W W, et al. Cyclic oxidation behavior of Nb/Mn/Si alloying beta-gamma TiAl alloys [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 128
|
22 |
Zhao P X, Li X B, Tang H J, et al. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition [J]. Oxid. Met., 2020, 93: 433
|
23 |
Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
|
24 |
Li X B, Xu H, Xing W W, et al. Microstructural evolution and mechanical properties of forged β-solidified γ-TiAl alloy by different heat treatments [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 2229
|
25 |
Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diffus., 2006, 27: 255
|
26 |
Cheng T T, Loretto M H. The decomposition of the beta phase in Ti-44Al-8Nb and Ti-44Al-4Nb-4Zr-0.2Si alloys [J]. Acta Mater., 1998, 46: 4801
|
27 |
Huang H T, Ding H S, Xu X S, et al. Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy [J]. J. Alloys Compd., 2021, 860: 158082
|
28 |
Musi M, Clemens H, Stark A, et al. Phase transformations and phase stability in the Ti-44 at.% Al-(0-7 at.%) Mo system [J]. Intermetallics, 2022, 143: 107484
|
29 |
Schloffer M, Rashkova B, Schöberl T, et al. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness [J]. Acta Mater., 2014, 64: 241
|
30 |
Liu B G, Liu L H, Xing W D, et al. Structural stability and the alloying effect of TiB polymorphs in TiAl alloys [J]. Intermetallics, 2017, 90: 97
|
31 |
Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM = V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
|
32 |
Ye L H, Wang H, Zhou G, et al. Phase stability of TiAl-X (X = V, Nb, Ta, Cr, Mo, W, and Mn) alloys [J]. J. Alloys Compd., 2020, 819: 153291
|
33 |
Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36: 91
doi: 10.1016/j.jmst.2019.03.018
|
34 |
Wu J S, Beaven P A, Wagner R. The Ti3(Al, Si) + Ti5(Si, Al)3 eutectic reaction in the Ti-Al-Si system [J]. Scr. Metall. Mater., 1990, 24: 207
|
35 |
Fang H Z, Chen R R, Yang Y, et al. Effects of tantalum on microstructure evolution and mechanical properties of high-Nb TiAl alloys reinforced by Ti2AlC [J]. Research, 2019, 2019: 5143179
|
36 |
Dai C R, Sun J. Microstructure optimization and improved tensile property in a high Nb-containing γ-TiAl alloy [J]. Mater. Charact., 2022, 185: 111743
|
37 |
Li X B, Xu H, Xing W W, et al. Phase transformation behavior of a β-solidifying γ-TiAl-based alloy from different phase regions with various cooling methods [J]. Metals, 2018, 8: 731
|
38 |
Kastenhuber M, Klein T, Rashkova B, et al. Phase transformations in a β-solidifying γ-TiAl based alloy during rapid solidification [J]. Intermetallics, 2017, 91: 100
|
39 |
Strychor R, Williams J C, Soffa W A. Phase transformations and modulated microstructures in Ti-Al-Nb alloys [J]. Metall. Trans., 1988, 19A: 225
|
40 |
Zheng S K, Shen J, Wang W, et al. Multi-twinned deformation and fracture characteristics of directional solidified Ti-45.5Al-5Nb-0.5Ta alloys during high-temperature rotary-bending fatigue process [J]. Mater. Sci. Eng., 2023, A876: 145157
|
41 |
Hug G, Loiseau A, Veyssière P. Weak-beam observation of a dissociation transition in TiAl [J]. Philos. Mag., 1988, 57A: 499
|
42 |
Denquin A, Naka S. Phase transformation mechanisms involved in two-phase TiAl-based alloys—I. Lambellar structure formation [J]. Acta Mater., 1996, 44: 343
|
43 |
Ramanujan R V. Phase transformations in γ based titanium aluminides [J]. Int. Mater. Rev., 2000, 45: 217
|
44 |
Wang X D, Shen Y D, Song S X, et al. Atomic-scale understanding of the γ/α2 interface in a TiAl alloy [J]. J. Alloys Compd., 2020, 846: 156381
|
45 |
Chen G L, Xu X J, Teng Z K, et al. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale [J]. Intermetallics, 2007, 15: 625
|
46 |
Zhu H L, Seo D Y, Maruyama K. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys [J]. JOM, 2010, 62(1): 64
|
47 |
Mayer S, Erdely P, Fischer F D, et al. Intermetallic β-solidifying γ-TiAl based alloys—From fundamental research to application [J]. Adv. Eng. Mater., 2017, 19: 1600735
|
48 |
Liu G H, Wang Z D, Fu T L, et al. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification [J]. J. Alloys Compd., 2015, 650: 45
|
49 |
Bu Z Q, Zhang Y G, Yang L, et al. Effect of cooling rate on phase transformation in Ti2AlNb alloy [J]. J. Alloys Compd., 2022, 893: 162364
|
50 |
Liu H W, Li Z X, Gao F, et al. High tensile ductility and strength in the Ti-42Al-6V-1Cr alloy [J]. J. Alloys Compd., 2017, 698: 898
|
51 |
Schloffer M, Iqbal F, Gabrisch H, et al. Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy [J]. Intermetallics, 2012, 22: 231
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|