Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1060-1070    DOI: 10.11900/0412.1961.2023.00355
  研究论文 本期目录 | 过刊浏览 |
一种新型Ti-Al-Mn-Nb合金的固态相变行为
王强1,2, 李小兵2, 郝俊杰2, 陈波2, 张滨2(), 张二林1, 刘奎2
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2 季华实验室 佛山 528200
Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy
WANG Qiang1,2, LI Xiaobing2, HAO Junjie2, CHEN Bo2, ZHANG Bin2(), ZHANG Erlin1, LIU Kui2
1 Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Ji Hua Laboratory, Foshan 528200, China
引用本文:

王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
Qiang WANG, Xiaobing LI, Junjie HAO, Bo CHEN, Bin ZHANG, Erlin ZHANG, Kui LIU. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. Acta Metall Sin, 2025, 61(7): 1060-1070.

全文: PDF(3577 KB)   HTML
摘要: 

为了制定新型β凝固γ-TiAl合金合理的热加工和热处理工艺,研究其相变行为和组织变化规律具有极其重要的指导意义。本工作设计出一种新型的Ti-Al-Mn-Nb合金,该合金的名义成分(原子分数,%)为Ti-43Al-1.5Mn-3Nb-0.2Si-0.2C-0.1B,采用Pandat热力学软件计算、EPMA、TEM、EBSD和XRD等方法,系统研究了该新型合金在1440 ℃至1000 ℃温度范围内的组织演变行为。结果表明,铸态合金组织由片层组织(α2/γ)和片层组织周围少量βo/γ混合相组成。合金的凝固和固态相变路径为:liquid→liquid + βββ + ααα + γ→(α2 + γ)→(α2 + γ) + βo→(α2 + γ) + βo + γg,其β转变温度(Tβ )约为1420 ℃,γ相溶解温度(Tγ, solv)约为1280 ℃,共析转变温度(Teut)约为1160 ℃。当温度略低于Tγ, solv时,由α相析出的γ呈片层状,α相和γ相始终存在Blackburn位向关系:(111) γ //(0001)α2、<11¯0)> γ //<112¯0>α2;由α相析出的βo呈块状,遵循Burgers位向关系:(110)βO//(0001)α2、<111>βO//<112¯0>α2。新型合金淬火组织的Vickers硬度位于385~512 HV范围内,随着淬火温度的升高淬火组织显微硬度提高,在β单相区淬火后生成的马氏体组织使得硬度达到512 HV。该新型合金同时具有βα单相区,对发展可调控出全片层结构的易变形、高承温新型β凝固γ-TiAl合金具有重要指导意义。

关键词 β凝固γ-TiAl合金固态相变显微组织凝固路径显微硬度    
Abstract

γ-TiAl based alloys are advanced structural materials use in the automotive and aerospace industries. Their notable characteristics, including low density, high specific yield strength, and exceptional resistance to creep and oxidation, make them highly viable for being used as structural components in high-temperature applications of internal combustion engines. The novel β-solidifying γ-TiAl alloy designed in this study demonstrated excellent oxidation resistance at temperatures of 750, 800, and 850 oC. However, research regarding the solid-state phase transformations and microstructure control of this alloy is lacking. The study of the phase transformation behavior and microstructural evolution of alloys is crucial for developing appropriate thermal processing and heat treatment techniques for β-solidifying γ-TiAl alloys. This work introduces a novel Ti-Al-Mn-Nb alloy, with a nominal composition of Ti-43Al-1.5Mn-3Nb-0.2Si-0.2C-0.1B (atomic fraction, %). Using Pandat software for thermodynamic calculations, along with techniques such as EPMA, TEM, EBSD, and XRD, an extensive and meticulous investigation of the microstructural transformations within the range from 1440 oC to 1000 oC for this innovative alloy was undertaken. The results indicate that the as-cast microstructure of the alloy comprises a lamellar colony (α2/γ), grain γ phase, and a small amount of βo. The solidification pathway of the alloy can be determined as follows: liquid→liquid + βββ + ααα + γ→(α2 + γ)→(α2 + γ) + βo→(α2 + γ) + βo + γg. The temperature at which the alloy exists as a single β phase (Tβ ) is approximately 1420 oC, while the decomposition temperature of γ phase (Tγ,solv) is approximately 1280 oC; additionally, the eutectoid transformation temperature (Teut) is approximately 1160 oC. Slightly below Tγ, solv, the γ precipitated from the α phase exhibits a lamellar structure. The α and γ phases consistently demonstrate a Blackburn orientation relationship: (111) γ //(0001)α2 and <11¯0> γ //<112¯0>α2, respectively. The secondary βo phase precipitated from the α phase appears as a block shape and follows the Burgers orientation relationship: (110)βO//(0001)α2 and <111>βO//<112¯0>α2. The Vickers hardness of the quenched microstructure of the novel alloy ranges between 385 and 512 HV. With an increase in the quenching temperature, there is an observable enhancement in the microhardness of the quenched microstructure. The martensite microstructure formed after quenching in the β single-phase area contributes to the hardness of 512 HV. This novel alloy encompasses the β and α single-phase areas; thereby holding significant implications for the development of novel, highly deformable, and high-temperature-resistant β-solidifying γ-TiAl alloys characterized with fully lamellar structures.

Key wordsβ solidifying γ-TiAl alloy    solid-state phase transformation    microstructure    solidification pathway    microhardness
收稿日期: 2023-08-23     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金项目(51971215);季华实验室科研项目(X210291TL210)
通讯作者: 张 滨,zhangbin@jihualab.ac.cn,主要从事金属材料的组织结构表征研究
作者简介: 王 强,男,1994年生,硕士
图1  Ti-Al-Mn-Nb合金的平衡相图
图2  铸态Ti-Al-Mn-Nb合金的EPMA像、XRD谱及TEM像
图3  铸态Ti-Al-Mn-Nb合金的EPMA像及面分析结果
PhaseTiAlMnNbSi
βo56.9533.444.913.980.72
α2/γ50.9244.801.432.650.20
γ49.4745.281.823.110.32
表1  图3中各相的EPMA点分析结果 (atomic fraction / %)
图4  在不同温度保温30 min并水淬后Ti-Al-Mn-Nb的XRD谱
图5  在1440、1420、1360和1320 ℃保温30 min并水淬后Ti-Al-Mn-Nb合金的EPMA像
图6  在1300、1280、1260、1240、1200和1160 ℃保温30 min并水淬后Ti-Al-Mn-Nb合金的EPMA像
图7  在不同温度下保温30 min并水淬后Ti-Al-Mn-Nb合金的EBSD相分布图和极图
图8  在不同温度保温30 min并水淬后Ti-Al-Mn-Nb合金中β、α、γ相体积分数统计结果
图9  Ti-Al-Mn-Nb合金在冷却过程中的相变示意图
图10  在不同温度保温30 min并水淬后Ti-Al-Mn-Nb合金的Vickers硬度与显微组织
1 Drossou-Agakidou V, Kanakoudi-Tsakalidou F, Sarafidis K, et al. Administration of recombinant human granulocyte-colony stimulating factor to septic neonates induces neutrophilia and enhances the neutrophil respiratory burst and β2 integrin expression Results of a randomized controlled trial [J]. Eur. J. Pediatr., 1998, 157: 583
pmid: 9686822
2 Djanarthany S, Viala J C, Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl [J]. Mater. Chem. Phys., 2001, 72: 301
3 Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, A263: 281
4 Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J]. JOM, 2018, 70: 553
5 Fang H Z, Wang S, Chen R R, et al. The effects of the formation of a multi-scale reinforcing phase on the microstructure evolution and mechanical properties of a Ti2AlC/TiAl alloy [J]. Nanoscale, 2021, 13: 12565
6 Xu H, Li X B, Xing W W, et al. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy [J]. J. Mater. Sci. Technol., 2019, 35: 2652
doi: 10.1016/j.jmst.2019.05.061
7 Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying tial alloys with adjustable β/B2-phase fraction and excellent hot-workability [J]. Adv. Eng. Mater., 2008, 10: 707
8 Zeng S W, Zhao A M, Luo L, et al. Development of β-solidifying γ-TiAl alloys sheet [J]. Mater. Lett., 2017, 198: 31
9 Semiatin S L, Shanahan B W, Meisenkothen F. Hot rolling of gamma titanium aluminide foil [J]. Acta Mater., 2010, 58: 4446
10 Varma S K, Mahapatra R, Hernandez C, et al. Influence of processing on microstructures of Ti-44Al-llNb alloy [J]. Mater. Manuf. Processes, 1999, 14: 821
11 Dong C L, Jiao Z H, Yu H C, et al. Effect of dwell condition on fatigue behavior of a high-Nb TiAl alloy at 750 oC [J]. Intermetallics, 2017, 91: 1
12 Liang Z Q, Xiao S L, Li Q C, et al. Creep behavior and related phase precipitation of a creep-resistant Y2O3-bearing high Nb containing TiAl alloy [J]. Mater. Charact., 2023, 198: 112767
13 Liu Y, Li J S, Tang B, et al. Decomposition and phase transformation mechanisms of α2 lamellae in β-solidified γ-TiAl alloys [J]. Acta Mater., 2023, 242: 118492
14 Ballor J, Li T, Prima F, et al. A review of the metastable omega phase in beta titanium alloys: The phase transformation mechanisms and its effect on mechanical properties [J]. Int. Mater. Rev., 2023, 68: 26
15 Guo X, Song L, Liu X, et al. In-situ synchrotron HEXRD study on the phase transformation mechanisms of the ω-related phases in a Ti4Al3Nb alloy [J]. Mater. Charact., 2023, 200: 112901
16 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
16 杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
17 Kainuma R, Fujita Y, Mitsui H, et al. Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys [J]. Intermetallics, 2000, 8: 855
18 Genc O, Unal R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review [J]. J. Alloys Compd., 2022, 929: 167262
19 Duan B H, Yang Y C, He S Y, et al. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations [J]. J. Alloys Compd., 2022, 909: 164811
20 Song L, Lin J P, Li J S. Effects of trace alloying elements on the phase transformation behaviors of ordered ω phases in high Nb-TiAl alloys [J]. Mater. Des., 2017, 113: 47
21 Zhao P X, Li X B, Xing W W, et al. Cyclic oxidation behavior of Nb/Mn/Si alloying beta-gamma TiAl alloys [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 128
22 Zhao P X, Li X B, Tang H J, et al. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition [J]. Oxid. Met., 2020, 93: 433
23 Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
24 Li X B, Xu H, Xing W W, et al. Microstructural evolution and mechanical properties of forged β-solidified γ-TiAl alloy by different heat treatments [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 2229
25 Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diffus., 2006, 27: 255
26 Cheng T T, Loretto M H. The decomposition of the beta phase in Ti-44Al-8Nb and Ti-44Al-4Nb-4Zr-0.2Si alloys [J]. Acta Mater., 1998, 46: 4801
27 Huang H T, Ding H S, Xu X S, et al. Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy [J]. J. Alloys Compd., 2021, 860: 158082
28 Musi M, Clemens H, Stark A, et al. Phase transformations and phase stability in the Ti-44 at.% Al-(0-7 at.%) Mo system [J]. Intermetallics, 2022, 143: 107484
29 Schloffer M, Rashkova B, Schöberl T, et al. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness [J]. Acta Mater., 2014, 64: 241
30 Liu B G, Liu L H, Xing W D, et al. Structural stability and the alloying effect of TiB polymorphs in TiAl alloys [J]. Intermetallics, 2017, 90: 97
31 Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM = V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
32 Ye L H, Wang H, Zhou G, et al. Phase stability of TiAl-X (X = V, Nb, Ta, Cr, Mo, W, and Mn) alloys [J]. J. Alloys Compd., 2020, 819: 153291
33 Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36: 91
doi: 10.1016/j.jmst.2019.03.018
34 Wu J S, Beaven P A, Wagner R. The Ti3(Al, Si) + Ti5(Si, Al)3 eutectic reaction in the Ti-Al-Si system [J]. Scr. Metall. Mater., 1990, 24: 207
35 Fang H Z, Chen R R, Yang Y, et al. Effects of tantalum on microstructure evolution and mechanical properties of high-Nb TiAl alloys reinforced by Ti2AlC [J]. Research, 2019, 2019: 5143179
36 Dai C R, Sun J. Microstructure optimization and improved tensile property in a high Nb-containing γ-TiAl alloy [J]. Mater. Charact., 2022, 185: 111743
37 Li X B, Xu H, Xing W W, et al. Phase transformation behavior of a β-solidifying γ-TiAl-based alloy from different phase regions with various cooling methods [J]. Metals, 2018, 8: 731
38 Kastenhuber M, Klein T, Rashkova B, et al. Phase transformations in a β-solidifying γ-TiAl based alloy during rapid solidification [J]. Intermetallics, 2017, 91: 100
39 Strychor R, Williams J C, Soffa W A. Phase transformations and modulated microstructures in Ti-Al-Nb alloys [J]. Metall. Trans., 1988, 19A: 225
40 Zheng S K, Shen J, Wang W, et al. Multi-twinned deformation and fracture characteristics of directional solidified Ti-45.5Al-5Nb-0.5Ta alloys during high-temperature rotary-bending fatigue process [J]. Mater. Sci. Eng., 2023, A876: 145157
41 Hug G, Loiseau A, Veyssière P. Weak-beam observation of a dissociation transition in TiAl [J]. Philos. Mag., 1988, 57A: 499
42 Denquin A, Naka S. Phase transformation mechanisms involved in two-phase TiAl-based alloys—I. Lambellar structure formation [J]. Acta Mater., 1996, 44: 343
43 Ramanujan R V. Phase transformations in γ based titanium aluminides [J]. Int. Mater. Rev., 2000, 45: 217
44 Wang X D, Shen Y D, Song S X, et al. Atomic-scale understanding of the γ/α2 interface in a TiAl alloy [J]. J. Alloys Compd., 2020, 846: 156381
45 Chen G L, Xu X J, Teng Z K, et al. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale [J]. Intermetallics, 2007, 15: 625
46 Zhu H L, Seo D Y, Maruyama K. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys [J]. JOM, 2010, 62(1): 64
47 Mayer S, Erdely P, Fischer F D, et al. Intermetallic β-solidifying γ-TiAl based alloys—From fundamental research to application [J]. Adv. Eng. Mater., 2017, 19: 1600735
48 Liu G H, Wang Z D, Fu T L, et al. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification [J]. J. Alloys Compd., 2015, 650: 45
49 Bu Z Q, Zhang Y G, Yang L, et al. Effect of cooling rate on phase transformation in Ti2AlNb alloy [J]. J. Alloys Compd., 2022, 893: 162364
50 Liu H W, Li Z X, Gao F, et al. High tensile ductility and strength in the Ti-42Al-6V-1Cr alloy [J]. J. Alloys Compd., 2017, 698: 898
51 Schloffer M, Iqbal F, Gabrisch H, et al. Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy [J]. Intermetallics, 2012, 22: 231
[1] 周任远, 朱丽慧. Inconel 740H焊接接头不同温度蠕变后 γ贫化区的形成及其对力学性能的影响[J]. 金属学报, 2025, 61(5): 744-756.
[2] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[3] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[4] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[5] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[6] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[7] 王峰, 白盛巍, 王志, 杜旭东, 周乐, 毛萍莉, 魏子淇, 李瑾伟. Mg-Zn系合金热裂行为的研究进展[J]. 金属学报, 2024, 60(6): 743-759.
[8] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[9] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[10] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[11] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[12] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[13] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[14] 张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.
[15] 蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530.