Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1485-1501    DOI: 10.11900/0412.1961.2024.00178
  综述 本期目录 | 过刊浏览 |
综述:中间包钢液二次氧化对钢中非金属夹杂物的影响
段生朝1, 刘珍童2, 康君3, 白乘风3, 文健3, 刘刚3, 张立峰1()
1 北方工业大学 机械与材料工程学院 北京 100144
2 燕山大学 机械工程学院 秦皇岛 066004
3 金海不锈钢有限公司 梧州 543002
Review: Effect of Reoxidation on the Non-Metallic Inclusion in Molten Steels in Tundish
DUAN Shengchao1, LIU Zhentong2, KANG Jun3, BAI Chengfeng3, WEN Jian3, LIU Gang3, ZHANG Lifeng1()
1 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
2 School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
3 Jinhai Stainless Steel Co. Ltd., Wuzhou 543002, China
引用本文:

段生朝, 刘珍童, 康君, 白乘风, 文健, 刘刚, 张立峰. 综述:中间包钢液二次氧化对钢中非金属夹杂物的影响[J]. 金属学报, 2025, 61(10): 1485-1501.
Shengchao DUAN, Zhentong LIU, Jun KANG, Chengfeng BAI, Jian WEN, Gang LIU, Lifeng ZHANG. Review: Effect of Reoxidation on the Non-Metallic Inclusion in Molten Steels in Tundish[J]. Acta Metall Sin, 2025, 61(10): 1485-1501.

全文: PDF(3241 KB)   HTML
摘要: 

中间包是钢液流过的最后一个冶金反应器,它对钢铁产品的质量有着重要的影响。随着对高纯净钢需求的日益增加,中间包冶金的作用也越来越受到人们的重视。本文系统地总结了非稳态浇注过程中的钢液吸气、稳态浇注过程中的中间包覆盖剂和中间包耐火材料对不同钢种二次氧化的影响,钢液二次氧化对非金属夹杂物的影响,以及减轻中间包内钢液二次氧化的措施。造成钢液二次氧化的3个因素是同时发生的,但是在非稳态浇注阶段,钢液吸气是造成钢液二次氧化的主要原因;在稳态浇注阶段,中间包覆盖剂和耐火材料则成为主要原因。当钢液吸气发生二次氧化时,不同成分钢液的吸气速率并不相同。在钢液稳定浇注过程中,中间包双层覆盖剂顶层碳化稻壳灰中高含量的SiO2会逐渐向底层高碱度覆盖剂溶解,且在渣/钢界面发生自溶解反应(SiO2) = [Si] + 2[O],造成钢液中的Al、Ti和Mn元素的损失,Si元素和总氧(T.O)含量的增加,以及夹杂物成分、尺寸和数量的变化。Al2O3-SiO2-C质水口耐火材料也会发生碳热反应生成氧化性CO气体,这是造成超低碳含Ti铝镇静钢发生二次氧化,导致水口堵塞的主要原因。中间包喷补料和钢包引流砂中含有的不稳定氧化物(如Cr2O3、MnO、SiO2和FeO)也会造成钢液严重的二次氧化。通过设计新型中间包覆盖剂替代碳化稻壳灰,能够减少渣中SiO2向底层覆盖剂中的溶解,从而减轻钢液的二次氧化。对于水口材料,可以通过使用氮化物以减少氧化性气体CO的释放,从而抑制水口结瘤和堵塞。微孔镁质耐材具有良好的抗渣和隔热性能,微封闭微孔可以吸收热应力并减少耐材内部裂纹的萌生和扩展,因此微孔镁质耐材用于中间包内衬材料具有较好的应用前景。

关键词 中间包二次氧化耐火材料非金属夹杂物热力学    
Abstract

The tundish is the final metallurgical reactor through which molten steel flows, and it significantly affects the quality of steel products. With the increasing demand for high-purity steel, the role of tundish metallurgy has attracted greater attention. This study systemically examines the causes of reoxidation in molten steel, the effects of air absorption during nonsteady-state teeming, tundish cover flux interactions, and refractory materials during the steady-state teeming process. These factors were analyzed for their influence on the chemical and inclusion composition of different steel grades. In addition, measures to mitigate the reoxidation of molten steel in tundish were analyzed. The results demonstrate that the three factors causing the reoxidation of molten steel occur simultaneously. However, in the nonsteady-state teeming stage, air absorption in the molten steel is the primary cause of reoxidation. Conversely, in the steady-state teeming stage, tundish cover flux and refractory materials are the main reasons. When reoxidation occurs due to gas absorption by molten steel, the gas absorption rates varies for different steel compositions. In the stable teeming of molten steel, the high content of SiO2 in the rice husk ash (RHA) in the top layer of the double-layer cover flux gradually dissolves in the high-basicity cover agent in the bottom layer. At the slag-steel interface, the self-dissolution reaction (SiO2) = [Si] + 2[O] occurs, resulting in the loss of Al, Ti, and Mn elements in the molten steel, whereas the Si content, total oxygen (T.O) content increase, and the composition, size, and number density of the inclusions change. Carbothermal reactions between Al2O3-SiO2-C refractories and molten steel can generate oxidizing CO gas, which is the main cause of the reoxidation of ultra-low carbon Ti added Al-killed steel. In addition, unstable oxides such as Cr2O3, MnO, SiO2, and FeO present in the gunning material and ladle filler sand can cause serious steel reoxidation. The reoxidation of steel and dissolution of SiO2 in the underlying cover agent can be mitigated by designing a new type of tundish cover flux to replace the RHA. Nitrides can be used in the nozzle material to reduce the release of the oxidizing gas CO, preventing nozzle clogging. Microporous magnesia-refractory materials provide strong heat insulation and slag resistance.It can absorb thermal stress and reduce the initiation and expansion of cracks in refractory materials. Therefore, microporous magnesia refractories have good application prospects as tundish lining materials.

Key wordstundish    reoxidation    refractory material    non-metallic inclusion    thermodynamics
收稿日期: 2024-05-23     
ZTFLH:  TF746  
基金资助:国家重点研发计划项目(2023YFB3709901);国家自然科学基金项目(52404335)
通讯作者: 张立峰,zhanglifeng@ncut.edu.cn,主要从事高品质钢制备和钢中非金属夹杂物控制的研究
作者简介: 段生朝,男,1990年生,博士
图1  钢液流经中间包所发生的物理化学反应示意图[8]
图2  造成中间包内钢液二次氧化的原因[9]
图3  化学反应作用下钢/渣界面动态行为的机理示意图[30]
Tundish cover powderSteel compositionExperimental methodRef.
(39.5-62.5)CaO-(2.7-22.2)Al2O3-(2.6-47.4)SiO2

Ultra-low carbon

steel

The industrial trials were carried out at the No.5 continu-ous caster at Mizushima Works in Kawasaki Steel Corp-oration

[27]

52CaO-35Al2O3-13SiO2

50CaO-50SiO2-100SiO2

Al-killed steel

Reoxidation of Al-killed steel by slag and air was investigated in laboratory experiments and industrial trials in 85 t tundish at Sumitomo Metal Industries

[31]

*Non-killed and Al-killed steelsThe industrial trials were conducted in 60 t tundish at Nippon Steel Corporation[26]

RHA + (46-50)CaO-(42-45)Al2O3-3SiO2-2Fe2O3-

(1.8-2.5)TiO2

Ti-bearing Al-killed ultra-low carbon steel

The industrial trials were conducted at Tata Steel

[20]

26.8CaO-42.3Al2O3-

27.6SiO2

Ti-stabilized ultra-low carbon steel45 g steel covered with 40 g tundish slag was held in an alumina crucible at 1823 K[24]

RHA + 45CaO-35Al2O3-

10SiO2-5MgO-5CaF2

Al-killed Fe-C-Si steel500 g of steel and 50 g of slag were placed in a MgO crucible and heated to 1823 K (R = 0.14, 0.26, 0.38, and 1.0)

[8]

RHA + 55CaO-35Al2O3-

4SiO2-4MgO

Al-killed Fe-C-Si steel500 g of steel and 50 g of slag were placed in a MgO crucible and heated to 1823 K (RCA = 0.5, 0.75, 0.83, 0.87, and 0.90)

[28]

50CaO-30Al2O3-10SiO2-

10MgO-(5, 10)Cr2O3

Al-killed YT01 steel

The Al-killed steel was held in a MgO crucible at 1923 K for 30 min and then 20 g of slag with various Cr2O3 contents was added

[29]

73CaO-25SiO2-(1-15)FeO-1MnOUltra-low carbon steelThe slag-metal reactions between 30 g pre-melted slag and 100 g of sample were conducted in a zirconia crucible at 1853 K

[25]

44.2CaO-44.1Al2O3-

6.0SiO2-2.68MgO-1.17TiO2

Ti-bearing Al-killed ultra-low carbon steel400 kg of the basic tundish flux was added to the surface of the molten steel in the 70 t tundish, and then 60-80 kg of rice hull ball was added to the tundish flux

[21]

RHA + 45.65CaO-22.88Al2O3-20.75MgO-2.84SiO2Si-Mn killed SAE 1055 steel150 g steel and 20 g tundish slag (5 g RHA) were acco-mmodated in an Al2O3 crucible at 1853 K[32]
53.5CaO-41.5Al2O3-5MgO and 47.5CaO-47.5SiO2-5MgOSi-killed 304 stainless steel600 g of 304 stainless steel and 50 g of slag were cont-ained in a MgO crucible at 1773 K[33]

RHA, RHA + 51.1CaO-

43.3SiO2, and RHA +

52.6CaO-40.7Al2O3

Si-killed 316L stainless steel600 g of 316L stainless steel was placed in a MgO crucible at 1773 K and then 45 g of tundish flux was quickly added to the surface of the molten steel

[34]

表1  中间包覆盖剂造成钢液二次氧化的研究总结[8,20,21,24~29,31~34]
图4  低碳铝镇静钢[43]和超低碳含Ti铝镇静钢[44]的浇注过程中早期堵塞沉积物生长反应机理(a) low carbon Al-killed steel[43] (AG refractory—alumina graphite refractory)(b) ultra-low carbon Al-killed Ti-added steel[44] (Ti-ULC—Ti added ultra-low carbon)
图5  钛稳定超低碳钢和耐火材料界面显微组织[49]
Tundish refractory

Steel composition

(mass fraction / %)

Main conclusionRef.

Al2O3-SiO2

Ni-Fe alloy

The substitute of mullite to SiO2 mullite of the refractory bonding matrix or the use of alumina bricks can avoid the reoxidation of the melt and intense inclusion formation

[52]

GM, MgO boards, and dry powder0.45C-3.1Si-0.4Mn-8.5Cr-0.25NiAn oxidized steel layer can be formed at the steel/refractory lining interface[53]

MgO, Al2O3, MgO + 2MgO·SiO2 GMs

Ti-stabilized ultra-low carbon steel

The large difference in oxygen potential between refractory and steel phase leads to the formation of (Mg, Fe)O layer (PO2 = 10-11 Pa); The thicker layer was formed using MgO-based GM compared with Al2O3-based GM

[49]

MgO- and Al2O3-based GMsTi-stabilized ultra-low carbon steelThe oxidation capacity of MgO GM with 10SiO2-6FeO was higher than that of Al2O3 GM with 3.3SiO2 + 2FeO[24]
MgO-CaO and MgO-based GMsSi-Mn-killed SAE 1055 steelThe GM with the reducible oxides SiO2 and FeO was responsible for providing oxygen and causing reoxidation of the molten steel

[32]

MgO- and Al2O3-based GMsTi-stabilized ultra-low carbon steelThe MgO GM represented a stronger oxidizing capacity, while Al2O3 can improve the cleanliness of the molten steel[51]
High-silica tundish refractory (66MgO-27SiO2-4FeO-3CaO)

Fe-2Al alloy

The content of the oxidizing oxides in the refractory should be reduced to avoid the loss of Al in the alloy

[54,55]

表2  中间包耐火材料导致钢液二次氧化的研究总结[24,32,49,51~55]
图6  钢中夹杂物成分分布的变化[60]
图7  钢液发生二次氧化后板坯样品缺陷处典型团簇状CeAlO3簇的特征[69]
Steel compositionInitial inclusionInclusion composition after reoxidation of molten steelRef.

Al-killed and Ca-treated

API-X70 pipeline steel

Liquid calcium-aluminate inclusionAl2O3-rich inclusion[60]
Al-killed and Ca-treated 42CrMo steelLiquid CaO-MgO-Al2O3Solid CaO-MgO-Al2O3 and MgO-Al2O3[70]
Al-killed Fe-0.2C-0.1Si steelLiquid CaO-MgO-Al2O3Al2O3-rich inclusion[8,28]
Al-killed molten steelCaO-CaS (Al2O3)CaO-Al2O3 (CaS)[64]
Al-killed GCr15 bearing steelCaO-Al2O3-MgO-CaSThe increase in CaO and Al2O3 contents and decrease in MgO and CaS contents of the inclusion[71]
Al-killed low alloy steel containing rare earth CeSpherical Ce2O2S inclusionClustered-like CeAlO3[69]

Al-killed and Ca-treated

AH36 steel

Liquid CaO-Al2O3-MgOCaO-2Al2O3 and MgO-Al2O3[72]
Ca-treated carbon-manganese steelLiquid inclusion + CaSSemi-solid 60.4Al2O3-25.3CaO-7.2 SiO2-7.1MgO[73]
Al-killed and Ca-treated stainless steelCaO-Al2O3-SiO2-MgOMnO-Al2O3-SiO2-CaO[74]
GCr15 bearing steelLiquid calcium-aluminate inclusionCaO-6Al2O3 and Al2O3[75]
Fe-Al-Ti-O meltAl2O3 and Al2TiO5

Ti3O5 (high oxygen potential)

Al-Ti complex oxide (low oxygen potential)

[76]
Al-killed and Ti-alloyed IF steelAl2O3Al2O3-TiOx[77]
Ti-added ultra-low carbon steelAl2O3Liquid Fet O-Al2O3-TiOx[44]

Al-killed stainless steel

(20Cr-0.15Al-0.2Ti)

CaO-Al2O3-MgOSolid Al2O3-Cr2O3-TiO2[78]

Si-killed stainless steel

(18Cr-8Ni-0.48Si-1.06Mn)

Al2O3-SiO2-CaO-MnOAl2O3-SiO2-CaO-MnO with high SiO2-MnO content[79]
Si-killed spring steel

CaO-SiO2 and

Al2O3-SiO2-CaO

Al2O3-SiO2-MnO and SiO2-MnO[80]
Si-killed stainless steelCaO-SiO2-MgO-Al2O3Liquid + Mg[Al,Ti]2O4 composite inclusions[81]
Si-killed 316 stainless steelSiO2-MnOSiO2-rich inclusion[34]
表3  钢液二次氧化导致的不同钢种中夹杂物成分转变的研究总结[8,28,34,44,60,64,69~81]
图8  1540 ℃下Fe-Al-Ti-O系氧化物优势区图[82]
图9  加入不同渣后钢中夹杂物数量密度的变化[34]
图10  非稳定浇注过程中钢水中溶解氧的分散情况[85]
[1] Shangguan F Q, Yin R Y, Cui Z F, et al. Low-carbon development of steel industry [J]. Iron Steel, 2023, 58(11): 120
[1] 上官方钦, 殷瑞钰, 崔志峰 等. 钢铁工业低碳化发展 [J]. 钢铁, 2023, 58(11): 120
doi: 10.13228/j.boyuan.issn0449-749x.20230365
[2] Zhang L F, Zhu M Y. Metallurgy of Steelmaking [M]. Beijing: Higher Education Press, 2023: 261
[2] 张立峰, 朱苗勇. 炼钢学 [M]. 北京: 高等教育出版社, 2023: 261
[3] Bao Y P, Wang M. Tundish Metallurgy [M]. Beijing: Metallurgical Industry Press, 2019: 94
[3] 包燕平, 王 敏. 中间包冶金学 [M]. 北京: 冶金工业出版社, 2019: 94
[4] Zhu M Y, Deng Z Y. Evolution and control of non-metallic inclusions in steel during secondary refining process [J]. Acta Metall. Sin., 2022, 58: 28
doi: 10.11900/0412.1961.2021.00227
[4] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制 [J]. 金属学报, 2022, 58: 28
doi: 10.11900/0412.1961.2021.00227
[5] Yang W, Zhang L F, Ren Y, et al. Formation and prevention of nozzle clogging during the continuous casting of steels: A review [J]. ISIJ Int., 2024, 64: 1
[6] Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness [J]. ISIJ Int., 2003, 43: 271
[7] Park J H, Kang Y B. Reoxidation phenomena of liquid steel in secondary refining and continuous casting processes: A review [J]. Steel Res. Int., 2024, 95: 2300598
[8] Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish [J]. Metall. Mater. Trans., 2017, 48B: 1736
[9] Sasai K, Mizukami Y. Reoxidation behavior of molten steel in tundish [J]. ISIJ Int., 2000, 40: 40
[10] Chatterjee S, Li D H, Chattopadhyay K. Tundish open eye formation: A trivial event with dire consequences [J]. Steel Res. Int., 2017, 88: 1600436
[11] Tanaka H, Nishihara R, Kitagawa I, et al. Quantitative analysis of contamination of molten steel in tundish [J]. ISIJ Int., 1993, 33: 1238
[12] Tanaka H, Nishihara R, Miura R, et al. Technology for cleaning of molten steel in tundish [J]. ISIJ Int., 1994, 34: 868
[13] Sasai K, Mizukami Y. Effect of stirring on oxidation rate of molten steel [J]. ISIJ Int., 1996, 36: 388
[14] Sasai K, Mizukami Y. Oxidation rate of molten steel by argon gas blowing in tundish oxidizing atmosphere [J]. ISIJ Int., 2011, 51: 1119
[15] Sasai K, Matsuzawa A. Influence of steel grade on oxidation rate of molten steel in tundish [J]. ISIJ Int., 2012, 52: 831
[16] Li Y, Wu C H, Xie X, et al. Numerical simulation and application of tundish cover argon blowing for a two-strand slab continuous casting machine [J]. Metals, 2022, 12: 1801
[17] Li J S, Wang C, Chen Y F, et al. Research and application progress of plasma heating technology for continuous casting tundish [J]. Spec. Steel, 2024, 45(1): 1
doi: 10.20057/j.1003-8620.2023-00239
[17] 李京社, 王 存, 陈永峰 等. 中间包等离子体加热技术研究进展及应用 [J]. 特殊钢, 2024, 45(1): 1
[18] Zhang L F, Cai K K. Developing of the technology of tundish metallurgy [J]. Steelmaking, 1997, 13(4): 42
[18] 张立峰, 蔡开科. 中间包冶金技术的发展 [J]. 炼钢, 1997, 13(4): 42
[19] Holappa L, Kekkonen M, Louhenkilpi S, et al. Active tundish slag [J]. Steel Res. Int., 2013, 84: 638
[20] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel [J]. ISIJ Int., 2004, 44: 1653
[21] Xu R, Ling H T, Wang H J, et al. Investigation on the effects of ladle change operation and tundish cover powder on steel cleanliness in a continuous casting tundish [J]. Steel Res. Int., 2021, 92: 2100072
[22] Feichtinger S, Michelic S K, Kang Y B, et al. In situ observation of the dissolution of SiO2 particles in CaO-Al2O3-SiO2 slags and mathematical analysis of its dissolution pattern [J]. J. Am. Ceram. Soc., 2014, 97: 316
[23] Zhang L F, Ren Y. Concept of inclusion capacity of slag and its application [J]. Iron Steel, 2023, 58(2): 47
[23] 张立峰, 任 英. 精炼渣的夹杂物容量的概念及其应用 [J]. 钢铁, 2023, 58(2): 47
doi: 10.13228/j.boyuan.issn0449-749x.20220407
[24] Yan P C, Arnout S, Van Ende M A, et al. Steel reoxidation by gunning mass and tundish slag [J]. Metall. Mater. Trans., 2015, 46B: 1242
[25] Deng A J, Xia Y J, Dong H B, et al. Prediction of re-oxidation behaviour of ultra-low carbon steel by different slag series [J]. Sci. Rep., 2020, 10: 9423
doi: 10.1038/s41598-020-66318-w pmid: 32523016
[26] Goto H, Miyazawa K I. Reoxidation behavior of molten steel in non-killed and Al-killed steels [J]. ISIJ Int., 1998, 38: 256
[27] Bessho N, Yamasaki H, Fujii T, et al. Removal of inclusion from molten steel in continuous casting tundish [J]. ISIJ Int., 1992, 32: 157
[28] Kim T S, Holappa L, Park J H. Influence of calcium aluminate flux on reoxidation behaviour of molten steel during continuous casting process [J]. Ironmaking Steelmaking, 2020, 47: 84
[29] Wang F, Liu D X, Liu W, et al. Reoxidation of Al-killed steel by Cr2O3 from tundish cover flux [J]. Metals, 2019, 9: 554
[30] Ni P Y, Tanaka T, Suzuki M, et al. A kinetic model of mass transfer and chemical reactions at a steel/slag interface under effect of interfacial tensions [J]. ISIJ Int., 2019, 59: 737
[31] Higuchi Y, Tago Y, Fukagawa S, et al. Reoxidation behavior in Al killed steel during casting [J]. Tetsu Hagané, 1999, 85: 375
[31] 樋口 善彦, 田子 ユカリ, 深川 信 等. Alキルド鋼鋳込時の溶鋼再酸化挙動 [J]. 鉄と 鋼, 1999, 85: 375
[32] Alves P C, Pereira J A M, da Rocha V C, et al. Laboratorial analysis of inclusions formed by reoxidation in tundish steelmaking [J]. Steel Res. Int., 2018, 89: 1800248
[33] Kim T S, Lee S B, Park J H. Effect of tundish flux on compositional changes in non-metallic inclusions in stainless steel melts [J]. ISIJ Int., 2021, 61: 2998
[34] Duan S C, Kim T, Cho J, et al. Effect of tundish flux on reoxidation behavior of Si-killed 316L stainless steel [J]. J. Mater. Res. Technol., 2023, 24: 5165
[35] Biswas S, Sarkar D. Introduction to Refractories for Iron- and Steelmaking [M]. Cham: Springer, 2020: 377
[36] Vermeulen Y, Coletti B, Blanpain B, et al. Material evaluation to prevent nozzle clogging during continuous casting of Al killed steels [J]. ISIJ Int., 2002, 42: 1234
[37] Fukuda Y, Ueshima Y, Mizoguchi S. Mechanism of alumina deposition on alumina graphite immersion nozzle in continuous caster [J]. ISIJ Int., 1992, 32: 164
[38] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels [J]. ISIJ Int., 2010, 50: 1333
[39] Bai X F. Mechanisms of inclusion evolution and SEN clogging in ultra-pure ferritic stainless steels [D]. Beijing: University of Science and Technology Beijing, 2020
[39] 白雪峰. 超纯铁素体不锈钢夹杂物演变与浸入式水口结瘤机理研究 [D]. 北京: 北京科技大学, 2020
[40] Sasai K, Mizukami Y. Reaction mechanism between alumina graphite immersion nozzle and low carbon steel [J]. ISIJ Int., 1994, 34: 802
[41] Tsujino R, Tanaka A, Imamura A, et al. Mechanism of deposition of inclusion and metal in ZrO2-CaO-C immersion nozzle of continuous casting [J]. ISIJ Int., 1994, 34: 853
[42] Lee D J, Cho Y M, Kim J H, et al. In-situ measurement of gas emission by pyrolysis of various ceramic materials used for submerged-entry nozzle refractory [J]. Ceram. Int., 2023, 49: 32024
[43] Taijiro M, Tadashi I, Kiyoshi S, et al. Effects of carbon and silica in submerged entry nozzles on alumina buildup [J]. Taikabutsu, 1997, 49: 64
[43] 松井 泰次郎, 池本 正, 澤野 清志 等, アルミナ付着におよぼす浸漬ノズル中カーボン,シリカの影響 [J]. 耐火物, 1997, 49: 64
[44] Lee J H, Kang M H, Kim S K, et al. Oxidation of Ti added ULC steel by CO gas simulating interfacial reaction between the steel and SEN during continuous casting [J]. ISIJ Int., 2018, 58: 1257
[45] Lee J H, Kang Y B. Growth of initial clog deposits during continuous casting of Ti-ULC steel—Formation and reduction of the initial deposits at nozzle/steel interface [J]. ISIJ Int., 2020, 60: 426
[46] Tan C, Wang H J, Liu C, et al. Quantitative assessment of microporous MgO castable erosion and corrosion behaviors in two tundish covering fluxes [J]. Metall. Mater. Trans., 2024, 55B: 950
[47] Zou Y S, Gu H Z, Huang A, et al. Simultaneous enhance of the thermal shock resistance and slag-penetration resistance for tundish flow-control refractories: The role of microporous magnesia [J]. Mater. Des., 2023, 233: 112245
[48] Cai M F. Preparation and properties of sol-bonded magnesia-calcia hot gunning mixes [D]. Wuhan: Wuhan University of Science and Technology, 2020
[48] 蔡曼菲. 溶胶结合镁钙质热态喷补料的制备及性能研究 [D]. 武汉: 武汉科技大学, 2020
[49] Yan P C, Van Ende M A, Zinngrebe E, et al. Interaction between steel and distinct gunning materials in the tundish [J]. ISIJ Int., 2014, 54: 2551
[50] Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking [J]. Chin. J. Eng., 2018, 40: 1434
[50] 程礼梅, 张立峰, 沈 平. 钢铁冶金过程中的界面润湿性的基础 [J]. 工程科学学报, 2018, 40: 1434
[51] Liu Y, Li G Q, Wang L, et al. Effect of the tundish gunning materials on the steel cleanliness [J]. High Temp. Mater. Processes, 2018, 37: 313
[52] Lachmann S, Loh J, Wahlers F J, et al. Reoxidation of Ni- and Ni-Fe-alloys by Al2O3-SiO2 refractory materials [J]. Steel Res. Int., 2005, 76: 573
[53] Mantovani M C, Moraes L R, da Silva R L, et al. Interaction between molten steel and different kinds of MgO based tundish linings [J]. Ironmaking Steelmaking, 2013, 40: 319
[54] Alhussein A, Yang W. Mechanism of interface reactions between Fe-2%Al alloy and high-silica tundish refractory [J]. Trans. Indian Inst. Met., 2019, 72: 591
[55] Alhussein A, Yang W, Zhang L F. Effect of interactions between Fe-Al alloy and MgO-based refractory on the generation of MgO·Al2O3 spinel [J]. Ironmaking Steelmaking, 2020, 47: 424
[56] Kong L Z, Kang M, Zang X M, et al. Reaction behavior of high manganese and high aluminum steel with chromium-containing ladle filler sand [J]. Metall. Res. Technol., 2023, 120: 604
[57] Liu Y B, Wang J J, Zhang L F, et al. Laboratory investigation on quantitative effect of ladle filler sands on the cleanliness of a bearing steel [J]. Metall. Res. Technol., 2022, 119: 204
[58] Deng Z Y, Zhu M Y. Analysis on source of MnO/FeO containing macro-inclusions in alloyed steel [J]. Iron Steel, 2018, 53(2): 27
[58] 邓志银, 朱苗勇. 合金钢中MnO/FeO大型夹杂物来源分析 [J]. 钢铁, 2018, 53(2): 27
doi: 10.13228/j.boyuan.issn0449-749x.20170333
[59] Wang Q, He S P, He Y M, et al. Improvement in cleanness of continuously cast slab by decreasing slag carry over [J]. Iron Steel, 2007, 42(10): 32
[59] 王 谦, 何生平, 何宇明 等. 减少钢包下渣提高铸坯洁净度 [J]. 钢铁, 2007, 42(10): 32
[60] Yang G W, Wang X H, Huang F X, et al. Influence of reoxidation in tundish on inclusion for Ca-treated Al-killed steel [J]. Steel Res. Int., 2014, 85: 784
[61] Zhang L F. Non-Metallic Inclusions in Steel: Fundamentals [M]. Beijing: Metallurgical Industry Press, 2019: 743
[61] 张立峰. 钢中非金属夹杂物 [M]. 北京: 冶金工业出版社, 2019: 743
[62] Sun S, Waterfall S, Strobl N, et al. Inclusion control with Ca treatment to improve castability of low carbon aluminum-killed steel [A]. 8th International Symposium on High-Temperature Metallurgical Processing [M]. Cham: Springer, 2017: 347
[63] Michelic S K, Bernhard C. Significance of nonmetallic inclusions for the clogging phenomenon in continuous casting of steel——A review [J]. Steel Res. Int., 2022, 93: 2200086
[64] Li M, Liu Y, Zhang L F. Effect of reoxidation on inclusions in steel during calcium treatment [J]. Metall. Res. Technol., 2019, 116: 206
[65] Zhao D W, Li H B, Cui Y, et al. Control of inclusion composition in calcium treated aluminum killed steels [J]. ISIJ Int., 2016, 56: 1181
[66] Ren Y, Zhang L F, Ling H T, et al. A reaction model for prediction of inclusion evolution during reoxidation of Ca-treated Al-killed steels in tundish [J]. Metall. Mater. Trans., 2017, 48B: 1433
[67] Wang W J, Wang J J, Ren Y, et al. A thermodynamic model to predict the composition of inclusions in Al-killed Ca-treated steels [J]. Steel Res. Int., 2023, 94: 2200845
[68] Webler B A, Pistorius P C. A review of steel processing considerations for oxide cleanliness [J]. Metall. Mater. Trans., 2020, 51B: 2437
[69] Wang Y G, Liu C J. Effect of reoxidation on inclusions characteristic during casting in Al-killed steel containing rare earth [J]. Steel Res. Int., 2022, 93: 2200263
[70] Zhou L, Ma J C, Liu C D, et al. Influence of reoxidation and calcium treatment on nonmetallic inclusions in ultra-low oxygen special steel [J]. Steelmaking, 2017, 33(5): 66
[70] 周 力, 马建超, 刘从德 等. 二次氧化及钙处理对超低氧特殊钢中非金属夹杂物的影响 [J]. 炼钢, 2017, 33(5): 66
[71] Zhang Y H, Cheng G, Wang J J, et al. Evolution of nonmetallic inclusions in GCr15 bearing steels during continuous casting process [J]. Steel Res. Int., 2022, 93: 2100445
[72] Zhong H J, Jiang M, Wang Z Y, et al. Formation and evolution of inclusions in AH36 steel during LF-RH-CC process: The influences of Ca-treatment, reoxidation, and solidification [J]. Metall. Mater. Trans., 2023, 54B: 593
[73] Zhou Q Y, Ba J T, Chen W, et al. Evolution of non-metallic inclusions in a 303-ton calcium-treated heavy ingot [J]. Metall. Mater. Trans., 2023, 54B: 1565
[74] Ling H T, Wu J Y, Chang L Z, et al. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process [J]. Chin. J. Eng., 2023, 45: 737
[74] 凌海涛, 吴锦圆, 常立忠 等. 开浇过程二次氧化对铝脱氧不锈钢中夹杂物的影响 [J]. 工程科学学报, 2023, 45: 737
[75] Xu J F, Wang K P, Wang Y, et al. Evolution of inclusions at different degrees of secondary oxidation in GCr15 bearing steel [J]. J. Iron Steel Res., 2023, 35: 1496
doi: 10.13228/j.boyuan.issn1001-0963.20230011
[75] 徐建飞, 王昆鹏, 王 郢 等. GCr15轴承钢不同二次氧化程度下的夹杂物演变规律 [J]. 钢铁研究学报, 2023, 35: 1496
doi: 10.13228/j.boyuan.issn1001-0963.20230011
[76] Wang C, Verma N, Kwon Y, et al. A study on the transient inclusion evolution during reoxidation of a Fe-Al-Ti-O melt [J]. ISIJ Int., 2011, 51: 375
[77] Qin Y M, Wang X H, Huang F X, et al. Behavior of non-metallic inclusions of IF steel during production process [J]. J. Northeast. Univ. (Nat. Sci.), 2015, 36: 1614
[77] 秦颐鸣, 王新华, 黄福祥 等. IF钢生产过程非金属夹杂物行为研究 [J]. 东北大学学报(自然科学版), 2015, 36: 1614
doi: 10.12068/j.issn.1005-3026.2015.11.021
[78] Kim W Y, Nam G J, Kim S Y. Evolution of non-metallic inclusions in Al-killed stainless steelmaking [J]. Metall. Mater. Trans., 2021, 52B: 1508
[79] Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish [J]. ISIJ Int., 2016, 56: 584
[80] Lyu S, Ma X D, Huang Z Z, et al. Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel [J]. Metall. Mater. Trans., 2019, 50B: 1862
[81] Kim W Y, Kim K S, Kim S Y. Evolution of non-metallic inclusions in Si-killed stainless steelmaking [J]. Metall. Mater. Trans., 2021, 52B: 652
[82] Kang Y B, Lee J H. Reassessment of oxide stability diagram in the Fe-Al-Ti-O system [J]. ISIJ Int., 2017, 57: 1665
[83] Lee J H, Kang M H, Kim S K, et al. Influence of Al/Ti ratio in Ti-ULC steel and refractory components of submerged entry nozzle on formation of clogging deposits [J]. ISIJ Int., 2019, 59: 749
[84] Chatterjee S, Li D H, Chattopadhyay K. Modeling of liquid steel/slag/argon gas multiphase flow during tundish open eye formation in a two-strand tundish [J]. Metall. Mater. Trans., 2018, 49B: 756
[85] Wang J C, Liu Z T, Chen W, et al. Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change [J]. Int. J. Miner. Metall. Mater., 2024, 31: 1540
[86] Wang B, Shen S Y, Ruan Y W, et al. Simulation of gas-liquid two-phase flow in metallurgical process [J]. Acta Metall. Sin., 2020, 56: 619
doi: 10.11900/0412.1961.2019.00385
[86] 王 波, 沈诗怡, 阮琰炜 等. 冶金过程中的气液两相流模拟 [J]. 金属学报, 2020, 56: 619
[87] Chen H L. Numerical simulation on optimization of molten steel flow field of continuous casting tundish [D]. Qinhuangdao: Yanshan University, 2023
[87] 陈宏亮. 连铸中间包钢液流场优化的数值模拟研究 [D]. 秦皇岛: 燕山大学, 2023
[88] Yu J Y, Kang Y, Sohn I. Novel application of alkali oxides in basic tundish fluxes for enhancing inclusion removal in 321 stainless steels [J]. Metall. Mater. Trans., 2014, 45B: 113
[89] Kekkonen M, Leuverink D, Holappa L. Improving cleanliness of 16MnCrS5 case hardening steels by optimized active tundish flux [J]. Steel Res. Int., 2017, 88: 1600364
[90] Yuan C, Liu Y, Li G Q, et al. Comparison study on effect of nano-sized Al2O3 addition on the corrosion resistance of microporous magnesia aggregates against tundish slag [J]. Ceram. Int., 2022, 48: 5139
[91] Liu J, Guo M, Jones P T, et al. In situ observation of the direct and indirect dissolution of MgO particles in CaO-Al2O3-SiO2-based slags [J]. J. Eur. Ceram. Soc., 2007, 27: 1961
[92] Nightingale S A, Monaghan B J. Kinetics of spinel formation and growth during dissolution of MgO in CaO-Al2O3-SiO2 slag [J]. Metall. Mater. Trans., 2008, 39B: 643
[93] Mukai K, Tao Z T, Goto K, et al. In-situ observation of slag penetration into MgO refractory [J]. Scand. J Metall., 2002, 31: 68
[94] Wang W L, Xue L W, Zhang T S, et al. Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag [J]. Ceram. Int., 2019, 45: 20664
[95] Zhang W X, Huang A, Zou Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags [J]. J. Am. Ceram. Soc., 2020, 103: 2128
[96] Tayeb M A, Assis A N, Sridhar S, et al. MgO solubility in steelmaking slags [J]. Metall. Mater. Trans., 2015, 46B: 1112
[97] Lao Y G, Li G Q, Gao Y M, et al. Wetting and corrosion behavior of MgO substrates by CaO-Al2O3-SiO2-(MgO) molten slags [J]. Ceram. Int., 2022, 48: 14799
[98] Tan C, Liu Y, Li G Q, et al. Corrosion behavior of lightweight MgO in high basicity tundish slag [J]. Steel Res. Int., 2021, 92: 2100010
[99] Zhang W W, Zheng W, Yan W, et al. Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness [J]. J. Iron Steel Res. Int., 2023, 30: 1743
doi: 10.1007/s42243-022-00889-y
[100] Fu L P, Gu H Z, Huang A, et al. Design, fabrication and properties of lightweight wear lining refractories: A review [J]. J. Eur. Ceram. Soc., 2022, 42: 744
[1] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[2] 张宇, 吴盼, 贾东昇, 黄林科, 贾晓晴, 刘峰. 基于稳定性的第三代先进高强钢设计[J]. 金属学报, 2024, 60(2): 143-153.
[3] 廖名情, 王毅, 王义, 商顺利, 刘梓葵. 叠熵理论:从材料基因到材料性能[J]. 金属学报, 2024, 60(10): 1379-1387.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[9] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[10] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[11] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[13] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[14] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[15] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.