|
|
|
| 综述:中间包钢液二次氧化对钢中非金属夹杂物的影响 |
段生朝1, 刘珍童2, 康君3, 白乘风3, 文健3, 刘刚3, 张立峰1( ) |
1 北方工业大学 机械与材料工程学院 北京 100144 2 燕山大学 机械工程学院 秦皇岛 066004 3 金海不锈钢有限公司 梧州 543002 |
|
| Review: Effect of Reoxidation on the Non-Metallic Inclusion in Molten Steels in Tundish |
DUAN Shengchao1, LIU Zhentong2, KANG Jun3, BAI Chengfeng3, WEN Jian3, LIU Gang3, ZHANG Lifeng1( ) |
1 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China 2 School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China 3 Jinhai Stainless Steel Co. Ltd., Wuzhou 543002, China |
引用本文:
段生朝, 刘珍童, 康君, 白乘风, 文健, 刘刚, 张立峰. 综述:中间包钢液二次氧化对钢中非金属夹杂物的影响[J]. 金属学报, 2025, 61(10): 1485-1501.
Shengchao DUAN,
Zhentong LIU,
Jun KANG,
Chengfeng BAI,
Jian WEN,
Gang LIU,
Lifeng ZHANG.
Review: Effect of Reoxidation on the Non-Metallic Inclusion in Molten Steels in Tundish[J]. Acta Metall Sin, 2025, 61(10): 1485-1501.
| [1] |
Shangguan F Q, Yin R Y, Cui Z F, et al. Low-carbon development of steel industry [J]. Iron Steel, 2023, 58(11): 120
|
| [1] |
上官方钦, 殷瑞钰, 崔志峰 等. 钢铁工业低碳化发展 [J]. 钢铁, 2023, 58(11): 120
doi: 10.13228/j.boyuan.issn0449-749x.20230365
|
| [2] |
Zhang L F, Zhu M Y. Metallurgy of Steelmaking [M]. Beijing: Higher Education Press, 2023: 261
|
| [2] |
张立峰, 朱苗勇. 炼钢学 [M]. 北京: 高等教育出版社, 2023: 261
|
| [3] |
Bao Y P, Wang M. Tundish Metallurgy [M]. Beijing: Metallurgical Industry Press, 2019: 94
|
| [3] |
包燕平, 王 敏. 中间包冶金学 [M]. 北京: 冶金工业出版社, 2019: 94
|
| [4] |
Zhu M Y, Deng Z Y. Evolution and control of non-metallic inclusions in steel during secondary refining process [J]. Acta Metall. Sin., 2022, 58: 28
doi: 10.11900/0412.1961.2021.00227
|
| [4] |
朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制 [J]. 金属学报, 2022, 58: 28
doi: 10.11900/0412.1961.2021.00227
|
| [5] |
Yang W, Zhang L F, Ren Y, et al. Formation and prevention of nozzle clogging during the continuous casting of steels: A review [J]. ISIJ Int., 2024, 64: 1
|
| [6] |
Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness [J]. ISIJ Int., 2003, 43: 271
|
| [7] |
Park J H, Kang Y B. Reoxidation phenomena of liquid steel in secondary refining and continuous casting processes: A review [J]. Steel Res. Int., 2024, 95: 2300598
|
| [8] |
Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish [J]. Metall. Mater. Trans., 2017, 48B: 1736
|
| [9] |
Sasai K, Mizukami Y. Reoxidation behavior of molten steel in tundish [J]. ISIJ Int., 2000, 40: 40
|
| [10] |
Chatterjee S, Li D H, Chattopadhyay K. Tundish open eye formation: A trivial event with dire consequences [J]. Steel Res. Int., 2017, 88: 1600436
|
| [11] |
Tanaka H, Nishihara R, Kitagawa I, et al. Quantitative analysis of contamination of molten steel in tundish [J]. ISIJ Int., 1993, 33: 1238
|
| [12] |
Tanaka H, Nishihara R, Miura R, et al. Technology for cleaning of molten steel in tundish [J]. ISIJ Int., 1994, 34: 868
|
| [13] |
Sasai K, Mizukami Y. Effect of stirring on oxidation rate of molten steel [J]. ISIJ Int., 1996, 36: 388
|
| [14] |
Sasai K, Mizukami Y. Oxidation rate of molten steel by argon gas blowing in tundish oxidizing atmosphere [J]. ISIJ Int., 2011, 51: 1119
|
| [15] |
Sasai K, Matsuzawa A. Influence of steel grade on oxidation rate of molten steel in tundish [J]. ISIJ Int., 2012, 52: 831
|
| [16] |
Li Y, Wu C H, Xie X, et al. Numerical simulation and application of tundish cover argon blowing for a two-strand slab continuous casting machine [J]. Metals, 2022, 12: 1801
|
| [17] |
Li J S, Wang C, Chen Y F, et al. Research and application progress of plasma heating technology for continuous casting tundish [J]. Spec. Steel, 2024, 45(1): 1
doi: 10.20057/j.1003-8620.2023-00239
|
| [17] |
李京社, 王 存, 陈永峰 等. 中间包等离子体加热技术研究进展及应用 [J]. 特殊钢, 2024, 45(1): 1
|
| [18] |
Zhang L F, Cai K K. Developing of the technology of tundish metallurgy [J]. Steelmaking, 1997, 13(4): 42
|
| [18] |
张立峰, 蔡开科. 中间包冶金技术的发展 [J]. 炼钢, 1997, 13(4): 42
|
| [19] |
Holappa L, Kekkonen M, Louhenkilpi S, et al. Active tundish slag [J]. Steel Res. Int., 2013, 84: 638
|
| [20] |
Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel [J]. ISIJ Int., 2004, 44: 1653
|
| [21] |
Xu R, Ling H T, Wang H J, et al. Investigation on the effects of ladle change operation and tundish cover powder on steel cleanliness in a continuous casting tundish [J]. Steel Res. Int., 2021, 92: 2100072
|
| [22] |
Feichtinger S, Michelic S K, Kang Y B, et al. In situ observation of the dissolution of SiO2 particles in CaO-Al2O3-SiO2 slags and mathematical analysis of its dissolution pattern [J]. J. Am. Ceram. Soc., 2014, 97: 316
|
| [23] |
Zhang L F, Ren Y. Concept of inclusion capacity of slag and its application [J]. Iron Steel, 2023, 58(2): 47
|
| [23] |
张立峰, 任 英. 精炼渣的夹杂物容量的概念及其应用 [J]. 钢铁, 2023, 58(2): 47
doi: 10.13228/j.boyuan.issn0449-749x.20220407
|
| [24] |
Yan P C, Arnout S, Van Ende M A, et al. Steel reoxidation by gunning mass and tundish slag [J]. Metall. Mater. Trans., 2015, 46B: 1242
|
| [25] |
Deng A J, Xia Y J, Dong H B, et al. Prediction of re-oxidation behaviour of ultra-low carbon steel by different slag series [J]. Sci. Rep., 2020, 10: 9423
doi: 10.1038/s41598-020-66318-w
pmid: 32523016
|
| [26] |
Goto H, Miyazawa K I. Reoxidation behavior of molten steel in non-killed and Al-killed steels [J]. ISIJ Int., 1998, 38: 256
|
| [27] |
Bessho N, Yamasaki H, Fujii T, et al. Removal of inclusion from molten steel in continuous casting tundish [J]. ISIJ Int., 1992, 32: 157
|
| [28] |
Kim T S, Holappa L, Park J H. Influence of calcium aluminate flux on reoxidation behaviour of molten steel during continuous casting process [J]. Ironmaking Steelmaking, 2020, 47: 84
|
| [29] |
Wang F, Liu D X, Liu W, et al. Reoxidation of Al-killed steel by Cr2O3 from tundish cover flux [J]. Metals, 2019, 9: 554
|
| [30] |
Ni P Y, Tanaka T, Suzuki M, et al. A kinetic model of mass transfer and chemical reactions at a steel/slag interface under effect of interfacial tensions [J]. ISIJ Int., 2019, 59: 737
|
| [31] |
Higuchi Y, Tago Y, Fukagawa S, et al. Reoxidation behavior in Al killed steel during casting [J]. Tetsu Hagané, 1999, 85: 375
|
| [31] |
樋口 善彦, 田子 ユカリ, 深川 信 等. Alキルド鋼鋳込時の溶鋼再酸化挙動 [J]. 鉄と 鋼, 1999, 85: 375
|
| [32] |
Alves P C, Pereira J A M, da Rocha V C, et al. Laboratorial analysis of inclusions formed by reoxidation in tundish steelmaking [J]. Steel Res. Int., 2018, 89: 1800248
|
| [33] |
Kim T S, Lee S B, Park J H. Effect of tundish flux on compositional changes in non-metallic inclusions in stainless steel melts [J]. ISIJ Int., 2021, 61: 2998
|
| [34] |
Duan S C, Kim T, Cho J, et al. Effect of tundish flux on reoxidation behavior of Si-killed 316L stainless steel [J]. J. Mater. Res. Technol., 2023, 24: 5165
|
| [35] |
Biswas S, Sarkar D. Introduction to Refractories for Iron- and Steelmaking [M]. Cham: Springer, 2020: 377
|
| [36] |
Vermeulen Y, Coletti B, Blanpain B, et al. Material evaluation to prevent nozzle clogging during continuous casting of Al killed steels [J]. ISIJ Int., 2002, 42: 1234
|
| [37] |
Fukuda Y, Ueshima Y, Mizoguchi S. Mechanism of alumina deposition on alumina graphite immersion nozzle in continuous caster [J]. ISIJ Int., 1992, 32: 164
|
| [38] |
Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels [J]. ISIJ Int., 2010, 50: 1333
|
| [39] |
Bai X F. Mechanisms of inclusion evolution and SEN clogging in ultra-pure ferritic stainless steels [D]. Beijing: University of Science and Technology Beijing, 2020
|
| [39] |
白雪峰. 超纯铁素体不锈钢夹杂物演变与浸入式水口结瘤机理研究 [D]. 北京: 北京科技大学, 2020
|
| [40] |
Sasai K, Mizukami Y. Reaction mechanism between alumina graphite immersion nozzle and low carbon steel [J]. ISIJ Int., 1994, 34: 802
|
| [41] |
Tsujino R, Tanaka A, Imamura A, et al. Mechanism of deposition of inclusion and metal in ZrO2-CaO-C immersion nozzle of continuous casting [J]. ISIJ Int., 1994, 34: 853
|
| [42] |
Lee D J, Cho Y M, Kim J H, et al. In-situ measurement of gas emission by pyrolysis of various ceramic materials used for submerged-entry nozzle refractory [J]. Ceram. Int., 2023, 49: 32024
|
| [43] |
Taijiro M, Tadashi I, Kiyoshi S, et al. Effects of carbon and silica in submerged entry nozzles on alumina buildup [J]. Taikabutsu, 1997, 49: 64
|
| [43] |
松井 泰次郎, 池本 正, 澤野 清志 等, アルミナ付着におよぼす浸漬ノズル中カーボン,シリカの影響 [J]. 耐火物, 1997, 49: 64
|
| [44] |
Lee J H, Kang M H, Kim S K, et al. Oxidation of Ti added ULC steel by CO gas simulating interfacial reaction between the steel and SEN during continuous casting [J]. ISIJ Int., 2018, 58: 1257
|
| [45] |
Lee J H, Kang Y B. Growth of initial clog deposits during continuous casting of Ti-ULC steel—Formation and reduction of the initial deposits at nozzle/steel interface [J]. ISIJ Int., 2020, 60: 426
|
| [46] |
Tan C, Wang H J, Liu C, et al. Quantitative assessment of microporous MgO castable erosion and corrosion behaviors in two tundish covering fluxes [J]. Metall. Mater. Trans., 2024, 55B: 950
|
| [47] |
Zou Y S, Gu H Z, Huang A, et al. Simultaneous enhance of the thermal shock resistance and slag-penetration resistance for tundish flow-control refractories: The role of microporous magnesia [J]. Mater. Des., 2023, 233: 112245
|
| [48] |
Cai M F. Preparation and properties of sol-bonded magnesia-calcia hot gunning mixes [D]. Wuhan: Wuhan University of Science and Technology, 2020
|
| [48] |
蔡曼菲. 溶胶结合镁钙质热态喷补料的制备及性能研究 [D]. 武汉: 武汉科技大学, 2020
|
| [49] |
Yan P C, Van Ende M A, Zinngrebe E, et al. Interaction between steel and distinct gunning materials in the tundish [J]. ISIJ Int., 2014, 54: 2551
|
| [50] |
Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking [J]. Chin. J. Eng., 2018, 40: 1434
|
| [50] |
程礼梅, 张立峰, 沈 平. 钢铁冶金过程中的界面润湿性的基础 [J]. 工程科学学报, 2018, 40: 1434
|
| [51] |
Liu Y, Li G Q, Wang L, et al. Effect of the tundish gunning materials on the steel cleanliness [J]. High Temp. Mater. Processes, 2018, 37: 313
|
| [52] |
Lachmann S, Loh J, Wahlers F J, et al. Reoxidation of Ni- and Ni-Fe-alloys by Al2O3-SiO2 refractory materials [J]. Steel Res. Int., 2005, 76: 573
|
| [53] |
Mantovani M C, Moraes L R, da Silva R L, et al. Interaction between molten steel and different kinds of MgO based tundish linings [J]. Ironmaking Steelmaking, 2013, 40: 319
|
| [54] |
Alhussein A, Yang W. Mechanism of interface reactions between Fe-2%Al alloy and high-silica tundish refractory [J]. Trans. Indian Inst. Met., 2019, 72: 591
|
| [55] |
Alhussein A, Yang W, Zhang L F. Effect of interactions between Fe-Al alloy and MgO-based refractory on the generation of MgO·Al2O3 spinel [J]. Ironmaking Steelmaking, 2020, 47: 424
|
| [56] |
Kong L Z, Kang M, Zang X M, et al. Reaction behavior of high manganese and high aluminum steel with chromium-containing ladle filler sand [J]. Metall. Res. Technol., 2023, 120: 604
|
| [57] |
Liu Y B, Wang J J, Zhang L F, et al. Laboratory investigation on quantitative effect of ladle filler sands on the cleanliness of a bearing steel [J]. Metall. Res. Technol., 2022, 119: 204
|
| [58] |
Deng Z Y, Zhu M Y. Analysis on source of MnO/FeO containing macro-inclusions in alloyed steel [J]. Iron Steel, 2018, 53(2): 27
|
| [58] |
邓志银, 朱苗勇. 合金钢中MnO/FeO大型夹杂物来源分析 [J]. 钢铁, 2018, 53(2): 27
doi: 10.13228/j.boyuan.issn0449-749x.20170333
|
| [59] |
Wang Q, He S P, He Y M, et al. Improvement in cleanness of continuously cast slab by decreasing slag carry over [J]. Iron Steel, 2007, 42(10): 32
|
| [59] |
王 谦, 何生平, 何宇明 等. 减少钢包下渣提高铸坯洁净度 [J]. 钢铁, 2007, 42(10): 32
|
| [60] |
Yang G W, Wang X H, Huang F X, et al. Influence of reoxidation in tundish on inclusion for Ca-treated Al-killed steel [J]. Steel Res. Int., 2014, 85: 784
|
| [61] |
Zhang L F. Non-Metallic Inclusions in Steel: Fundamentals [M]. Beijing: Metallurgical Industry Press, 2019: 743
|
| [61] |
张立峰. 钢中非金属夹杂物 [M]. 北京: 冶金工业出版社, 2019: 743
|
| [62] |
Sun S, Waterfall S, Strobl N, et al. Inclusion control with Ca treatment to improve castability of low carbon aluminum-killed steel [A]. 8th International Symposium on High-Temperature Metallurgical Processing [M]. Cham: Springer, 2017: 347
|
| [63] |
Michelic S K, Bernhard C. Significance of nonmetallic inclusions for the clogging phenomenon in continuous casting of steel——A review [J]. Steel Res. Int., 2022, 93: 2200086
|
| [64] |
Li M, Liu Y, Zhang L F. Effect of reoxidation on inclusions in steel during calcium treatment [J]. Metall. Res. Technol., 2019, 116: 206
|
| [65] |
Zhao D W, Li H B, Cui Y, et al. Control of inclusion composition in calcium treated aluminum killed steels [J]. ISIJ Int., 2016, 56: 1181
|
| [66] |
Ren Y, Zhang L F, Ling H T, et al. A reaction model for prediction of inclusion evolution during reoxidation of Ca-treated Al-killed steels in tundish [J]. Metall. Mater. Trans., 2017, 48B: 1433
|
| [67] |
Wang W J, Wang J J, Ren Y, et al. A thermodynamic model to predict the composition of inclusions in Al-killed Ca-treated steels [J]. Steel Res. Int., 2023, 94: 2200845
|
| [68] |
Webler B A, Pistorius P C. A review of steel processing considerations for oxide cleanliness [J]. Metall. Mater. Trans., 2020, 51B: 2437
|
| [69] |
Wang Y G, Liu C J. Effect of reoxidation on inclusions characteristic during casting in Al-killed steel containing rare earth [J]. Steel Res. Int., 2022, 93: 2200263
|
| [70] |
Zhou L, Ma J C, Liu C D, et al. Influence of reoxidation and calcium treatment on nonmetallic inclusions in ultra-low oxygen special steel [J]. Steelmaking, 2017, 33(5): 66
|
| [70] |
周 力, 马建超, 刘从德 等. 二次氧化及钙处理对超低氧特殊钢中非金属夹杂物的影响 [J]. 炼钢, 2017, 33(5): 66
|
| [71] |
Zhang Y H, Cheng G, Wang J J, et al. Evolution of nonmetallic inclusions in GCr15 bearing steels during continuous casting process [J]. Steel Res. Int., 2022, 93: 2100445
|
| [72] |
Zhong H J, Jiang M, Wang Z Y, et al. Formation and evolution of inclusions in AH36 steel during LF-RH-CC process: The influences of Ca-treatment, reoxidation, and solidification [J]. Metall. Mater. Trans., 2023, 54B: 593
|
| [73] |
Zhou Q Y, Ba J T, Chen W, et al. Evolution of non-metallic inclusions in a 303-ton calcium-treated heavy ingot [J]. Metall. Mater. Trans., 2023, 54B: 1565
|
| [74] |
Ling H T, Wu J Y, Chang L Z, et al. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process [J]. Chin. J. Eng., 2023, 45: 737
|
| [74] |
凌海涛, 吴锦圆, 常立忠 等. 开浇过程二次氧化对铝脱氧不锈钢中夹杂物的影响 [J]. 工程科学学报, 2023, 45: 737
|
| [75] |
Xu J F, Wang K P, Wang Y, et al. Evolution of inclusions at different degrees of secondary oxidation in GCr15 bearing steel [J]. J. Iron Steel Res., 2023, 35: 1496
doi: 10.13228/j.boyuan.issn1001-0963.20230011
|
| [75] |
徐建飞, 王昆鹏, 王 郢 等. GCr15轴承钢不同二次氧化程度下的夹杂物演变规律 [J]. 钢铁研究学报, 2023, 35: 1496
doi: 10.13228/j.boyuan.issn1001-0963.20230011
|
| [76] |
Wang C, Verma N, Kwon Y, et al. A study on the transient inclusion evolution during reoxidation of a Fe-Al-Ti-O melt [J]. ISIJ Int., 2011, 51: 375
|
| [77] |
Qin Y M, Wang X H, Huang F X, et al. Behavior of non-metallic inclusions of IF steel during production process [J]. J. Northeast. Univ. (Nat. Sci.), 2015, 36: 1614
|
| [77] |
秦颐鸣, 王新华, 黄福祥 等. IF钢生产过程非金属夹杂物行为研究 [J]. 东北大学学报(自然科学版), 2015, 36: 1614
doi: 10.12068/j.issn.1005-3026.2015.11.021
|
| [78] |
Kim W Y, Nam G J, Kim S Y. Evolution of non-metallic inclusions in Al-killed stainless steelmaking [J]. Metall. Mater. Trans., 2021, 52B: 1508
|
| [79] |
Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish [J]. ISIJ Int., 2016, 56: 584
|
| [80] |
Lyu S, Ma X D, Huang Z Z, et al. Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel [J]. Metall. Mater. Trans., 2019, 50B: 1862
|
| [81] |
Kim W Y, Kim K S, Kim S Y. Evolution of non-metallic inclusions in Si-killed stainless steelmaking [J]. Metall. Mater. Trans., 2021, 52B: 652
|
| [82] |
Kang Y B, Lee J H. Reassessment of oxide stability diagram in the Fe-Al-Ti-O system [J]. ISIJ Int., 2017, 57: 1665
|
| [83] |
Lee J H, Kang M H, Kim S K, et al. Influence of Al/Ti ratio in Ti-ULC steel and refractory components of submerged entry nozzle on formation of clogging deposits [J]. ISIJ Int., 2019, 59: 749
|
| [84] |
Chatterjee S, Li D H, Chattopadhyay K. Modeling of liquid steel/slag/argon gas multiphase flow during tundish open eye formation in a two-strand tundish [J]. Metall. Mater. Trans., 2018, 49B: 756
|
| [85] |
Wang J C, Liu Z T, Chen W, et al. Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change [J]. Int. J. Miner. Metall. Mater., 2024, 31: 1540
|
| [86] |
Wang B, Shen S Y, Ruan Y W, et al. Simulation of gas-liquid two-phase flow in metallurgical process [J]. Acta Metall. Sin., 2020, 56: 619
doi: 10.11900/0412.1961.2019.00385
|
| [86] |
王 波, 沈诗怡, 阮琰炜 等. 冶金过程中的气液两相流模拟 [J]. 金属学报, 2020, 56: 619
|
| [87] |
Chen H L. Numerical simulation on optimization of molten steel flow field of continuous casting tundish [D]. Qinhuangdao: Yanshan University, 2023
|
| [87] |
陈宏亮. 连铸中间包钢液流场优化的数值模拟研究 [D]. 秦皇岛: 燕山大学, 2023
|
| [88] |
Yu J Y, Kang Y, Sohn I. Novel application of alkali oxides in basic tundish fluxes for enhancing inclusion removal in 321 stainless steels [J]. Metall. Mater. Trans., 2014, 45B: 113
|
| [89] |
Kekkonen M, Leuverink D, Holappa L. Improving cleanliness of 16MnCrS5 case hardening steels by optimized active tundish flux [J]. Steel Res. Int., 2017, 88: 1600364
|
| [90] |
Yuan C, Liu Y, Li G Q, et al. Comparison study on effect of nano-sized Al2O3 addition on the corrosion resistance of microporous magnesia aggregates against tundish slag [J]. Ceram. Int., 2022, 48: 5139
|
| [91] |
Liu J, Guo M, Jones P T, et al. In situ observation of the direct and indirect dissolution of MgO particles in CaO-Al2O3-SiO2-based slags [J]. J. Eur. Ceram. Soc., 2007, 27: 1961
|
| [92] |
Nightingale S A, Monaghan B J. Kinetics of spinel formation and growth during dissolution of MgO in CaO-Al2O3-SiO2 slag [J]. Metall. Mater. Trans., 2008, 39B: 643
|
| [93] |
Mukai K, Tao Z T, Goto K, et al. In-situ observation of slag penetration into MgO refractory [J]. Scand. J Metall., 2002, 31: 68
|
| [94] |
Wang W L, Xue L W, Zhang T S, et al. Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag [J]. Ceram. Int., 2019, 45: 20664
|
| [95] |
Zhang W X, Huang A, Zou Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags [J]. J. Am. Ceram. Soc., 2020, 103: 2128
|
| [96] |
Tayeb M A, Assis A N, Sridhar S, et al. MgO solubility in steelmaking slags [J]. Metall. Mater. Trans., 2015, 46B: 1112
|
| [97] |
Lao Y G, Li G Q, Gao Y M, et al. Wetting and corrosion behavior of MgO substrates by CaO-Al2O3-SiO2-(MgO) molten slags [J]. Ceram. Int., 2022, 48: 14799
|
| [98] |
Tan C, Liu Y, Li G Q, et al. Corrosion behavior of lightweight MgO in high basicity tundish slag [J]. Steel Res. Int., 2021, 92: 2100010
|
| [99] |
Zhang W W, Zheng W, Yan W, et al. Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness [J]. J. Iron Steel Res. Int., 2023, 30: 1743
doi: 10.1007/s42243-022-00889-y
|
| [100] |
Fu L P, Gu H Z, Huang A, et al. Design, fabrication and properties of lightweight wear lining refractories: A review [J]. J. Eur. Ceram. Soc., 2022, 42: 744
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|