|
|
|
| 基于轧制温度调控的Fe50Mn29Co10Cr10Cu1 高熵合金微观组织与力学性能 |
王家骏1, 袁野1, 何竹风1, 朱明伟2( ), 贾楠1( ) |
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2 沈阳航空航天大学 材料科学与工程学院 沈阳 110136 |
|
| Microstructures and Mechanical Properties of the Fe50Mn29Co10Cr10Cu1 High-Entropy Alloy Regulated by Rolling Temperature |
WANG Jiajun1, YUAN Ye1, HE Zhufeng1, ZHU Mingwei2( ), JIA Nan1( ) |
1 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China |
引用本文:
王家骏, 袁野, 何竹风, 朱明伟, 贾楠. 基于轧制温度调控的Fe50Mn29Co10Cr10Cu1 高熵合金微观组织与力学性能[J]. 金属学报, 2025, 61(10): 1502-1514.
Jiajun WANG,
Ye YUAN,
Zhufeng HE,
Mingwei ZHU,
Nan JIA.
Microstructures and Mechanical Properties of the Fe50Mn29Co10Cr10Cu1 High-Entropy Alloy Regulated by Rolling Temperature[J]. Acta Metall Sin, 2025, 61(10): 1502-1514.
| [1] |
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580
pmid: 24686581
|
| [2] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
| [3] |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2014, A375-377: 213
|
| [4] |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
|
| [5] |
Yoshida S, Ikeuchi T, Bhattacharjee T, et al. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys [J]. Acta Mater., 2019, 171: 201
doi: 10.1016/j.actamat.2019.04.017
|
| [6] |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
|
| [7] |
Kao Y F, Chen S K, Sheu J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTix Vy Zrz alloys [J]. Int. J. Hydrogen Energy, 2010, 35: 9046
|
| [8] |
Xiao N, Guan X, Wang D, et al. Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review [J]. Int. J. Miner. Metall. Mater., 2023, 30: 1667
|
| [9] |
Liu M H, Du C W, Liu Z Y, et al. A review on pitting corrosion and environmentally assisted cracking on duplex stainless steel [J]. Microstructures, 2023, 3: 2023020
|
| [10] |
Tian Y Z, Sun S J, Lin H R, et al. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation [J]. J. Mater. Sci. Technol., 2019, 35: 334
doi: 10.1016/j.jmst.2018.09.068
|
| [11] |
Xu N, Huang Y B, Gao Y X, et al. Novel casting CoCrNiAl eutectic high entropy alloys with high strength and good ductility [J]. Microstructures, 2023, 3(3): 2023015
|
| [12] |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
| [13] |
Xu X N, Li H J, Sun B Z, et al. Enhanced strength-ductility-toughness synergy in an HSLA steel with multi-gradient ultrafine grained structure by adopting a two-stage rolling coupling inter-pass ultra-fast cooling process [J]. J. Mater. Process. Technol., 2023, 313: 117832
|
| [14] |
Jiang W, Wang H, Li Z M, et al. Enhanced mechanical properties of a carbon and nitrogen Co-doped interstitial high-entropy alloy via tuning ultrafine-grained microstructures [J]. J. Mater. Sci. Technol., 2023, 144: 128
doi: 10.1016/j.jmst.2022.10.024
|
| [15] |
Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
|
| [16] |
Chandan A K, Murugaiyan P, Chowdhury S G. Temperature-dependent stacking fault energy, deformation behavior, and tensile properties of a new high-entropy alloy [J]. Mater. Sci. Eng., 2023, A883: 145522
|
| [17] |
Oh H S, Ma D C, Leyson G P, et al. Lattice Distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment [J]. Entropy, 2016, 18: 321
|
| [18] |
Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
|
| [19] |
Sun S J, Tian Y Z, Lin H R, et al. Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy [J]. Scr. Mater., 2019, 163: 111
|
| [20] |
Sun S J, Tian Y Z, Lin H R, et al. Revisiting the role of prestrain history in the mechanical properties of ultrafine-grained CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2021, A801: 140398
|
| [21] |
Moon J, Bouaziz O, Kim H S, et al. Twinning engineering of a CoCrFeMnNi high-entropy alloy [J]. Scr. Mater., 2021, 197: 113808
|
| [22] |
Bouaziz O, Scott C P, Petitgand G. Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins [J]. Scr. Mater., 2009, 60: 714
|
| [23] |
Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58: 484
|
| [24] |
Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7: 1103
|
| [25] |
He Z F. Microscopic deformation and strengthening-toughening of FeMnCoCr-based high-entropy alloys [D]. Shenyang: Northeastern University, 2021
|
| [25] |
何竹风. FeMnCoCr系高熵合金的微观形变与强韧化研究 [D]. 沈阳: 东北大学, 2021
|
| [26] |
Zhang H T, Wang C L, Shi S Y, et al. Tuning deformation mechanisms of face-centered-cubic high-entropy alloys via boron doping [J]. J. Alloys Compd., 2022, 911: 165103
|
| [27] |
Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704
pmid: 28079175
|
| [28] |
He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
|
| [29] |
He Z F, Guo Y X, Sun L F, et al. Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys [J]. Acta Mater., 2023, 243: 118495
|
| [30] |
Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
|
| [31] |
Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
|
| [32] |
Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano, 2018, 4: 46
|
| [33] |
Ungár T, Gubicza J, Ribárik G, et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals [J]. J. Appl. Cryst., 2001, 34: 298
|
| [34] |
Li X Q, Irving D L, Vitos L. First-principles investigation of the micromechanical properties of fcc-hcp polymorphic high-entropy alloys [J]. Sci. Rep., 2018, 8: 11196
doi: 10.1038/s41598-018-29588-z
pmid: 30046064
|
| [35] |
Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
|
| [36] |
Fullman R L. Measurement of particle sizes in opaque bodies [J]. JOM, 1953, 5: 447
|
| [37] |
Mohammad-Ebrahimi M H, Zarei-Hanzaki A, Abedi H R, et al. The enhanced static recrystallization kinetics of a non-equiatomichigh entropy alloy through the reverse transformation of strain induced martensite [J]. J. Alloys Compd., 2019, 806: 1550
|
| [38] |
Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scr. Mater., 2001, 45: 767
|
| [39] |
He B B, Wang M, Huang M X. Improving tensile properties of room-temperature quenching and partitioning steel by dislocation engineering [J]. Metall. Mater. Trans., 2019, 50A: 4021
|
| [40] |
Toth L S, Gu C F, Beausir B, et al. Geometrically necessary dislocations favor the Taylor uniform deformation mode in ultra-fine-grained polycrystals [J]. Acta Mater., 2016, 117: 35
|
| [41] |
Zhu C Y, Harrington T, Gray III G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
|
| [42] |
Yan B Y, Jiang S Y, Hu L, et al. Crystal plasticity finite element simulation of NiTi shape memory alloy under canning compression based on constitutive model containing dislocation density [J]. Mech. Mater., 2021, 157: 103830
|
| [43] |
Zhi H H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2020, 195: 371
|
| [44] |
Brinckmann S, Siegmund T, Huang Y G. A dislocation density based strain gradient model [J]. Int. J. Plast., 2006, 22: 1784
|
| [45] |
Muránsky O, Balogh L, Tran M, et al. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques [J]. Acta Mater., 2019, 175: 297
|
| [46] |
Liu Y, Cai S L. Gradients of strain to increase strength and ductility of magnesium alloys [J]. Metals, 2019, 9: 1028
|
| [47] |
Huang M X, He B B. Alloy design by dislocation engineering [J]. J. Mater. Sci. Technol., 2018, 34: 417
doi: 10.1016/j.jmst.2017.11.045
|
| [48] |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
| [49] |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
|
| [50] |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
| [51] |
Wang M M, Li Z M, Raabe D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy [J]. Acta Mater., 2018, 147: 236
|
| [52] |
Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
| [52] |
张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
| [53] |
Liu Y X, Zhang H F, Yang Y L, et al. Chemical short-range order dependence of micromechanical behavior in CoCrNi medium-entropy alloy studied by atomic simulations [J]. J. Alloys Compd., 2023, 968: 172002
|
| [54] |
Lu W J, Liebscher C H, Dehm G, et al. Bidirectional transformation enables hierarchical nanolaminate dual-phase HEAs [J]. Adv. Mater., 2018, 30: 1804727
|
| [55] |
Yuan Y, Wang J J, Wei J, et al. Cu alloying enables superior strength-ductility combination and high corrosion resistance of FeMnCoCr high entropy alloy [J]. J. Alloys Compd., 2024, 970: 172543
|
| [56] |
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|