Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1579-1592    DOI: 10.11900/0412.1961.2024.00013
  研究论文 本期目录 | 过刊浏览 |
坯体成形工艺对烧结制备超细晶WC-12Co硬质合金组织和力学性能的影响
王超, 王海滨(), 玄拾雷, 刘轩, 刘雪梅, 宋晓艳()
北京工业大学 材料科学与工程学院 新型功能材料教育部重点实验室 北京 100124
Effects of Powder Molding Process on the Microstructure and Mechanical Properties of As-Sintered Ultrafine- Grained WC-12Co Cemented Carbides
WANG Chao, WANG Haibin(), XUAN Shilei, LIU Xuan, LIU Xuemei, SONG Xiaoyan()
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

王超, 王海滨, 玄拾雷, 刘轩, 刘雪梅, 宋晓艳. 坯体成形工艺对烧结制备超细晶WC-12Co硬质合金组织和力学性能的影响[J]. 金属学报, 2025, 61(10): 1579-1592.
Chao WANG, Haibin WANG, Shilei XUAN, Xuan LIU, Xuemei LIU, Xiaoyan SONG. Effects of Powder Molding Process on the Microstructure and Mechanical Properties of As-Sintered Ultrafine- Grained WC-12Co Cemented Carbides[J]. Acta Metall Sin, 2025, 61(10): 1579-1592.

全文: PDF(5076 KB)   HTML
摘要: 

采用粉末冶金工艺制备硬质合金时,坯体的成形工艺对烧结制备硬质合金的组织和力学性能有显著影响,但目前缺乏规律性的认识。本工作以原位合成的超细WC-Co复合粉末为原料,研究了在粉末压制成坯体过程中成形剂的含量和溶液浓度以及生坯密度等成形工艺参数对烧结制备WC-12Co硬质合金尺寸、微观组织和力学性能的影响规律。结果表明,成形剂聚乙二醇(PEG)含量在一定范围内增加会导致烧结硬质合金中磁性Co含量呈线性增长,而PEG溶液的浓度主要影响其在粉末中分散的均匀性与喂料粒度,2者均会显著影响烧结制备硬质合金的物相、致密性和力学性能。压制过程中随生坯密度在一定范围内增加,烧结制备硬质合金的收缩率与其保持良好的线性关系,致密性先显著增加后保持稳定,抗弯强度则呈先增大后减小的变化趋势。当PEG质量分数为1.5%、PEG浓度为4.1%和生坯密度为7.7 g/cm3时,烧结制备硬质合金抗弯强度平均值达到4571 MPa,且测量值波动小。WC晶内形成的大量富Co纳米相阻碍位错运动是硬质合金强度提升的主要原因。

关键词 硬质合金成形剂生坯密度力学性能强化机制    
Abstract

The quality of the green body is crucial for achieving excellent mechanical properties in sintered cemented carbides via the powder metallurgy process, making it necessary to explore and optimize the powder molding process. In this study, the effects of the content and solution concentration of the pressing binder, as well as the green density during the powder molding process, on the geometries, microstructures, and mechanical properties of sintered WC-12Co cemented carbides were investigated. These materials were produced using in situ synthesized ultrafine WC-Co composite powder as the raw material. The results indicated that increasing the polyethylene glycol (PEG) content as the pressing binder within a certain range led to a linear increase in the magnetic Co content of the sintered cemented carbides. The concentration of the PEG solution primarily influenced its dispersion in the powder and feedstock particle size. Both of which considerably influenced the phase constitution, density, and mechanical properties of the prepared cemented carbides. During the pressing process, as the green density increased within a certain range, the shrinkage rate of the sintered alloys exhibited a good linear relationship with it. Additionally, the density of the cemented carbides initially increased notably and then stabilized, whereas the fracture strength initially increased and then decreased. By optimizing the conditions to 1.5% PEG content, 4.1% PEG concentration, and a green density of 7.7 g/cm3, the sintered cemented carbide achieved an exceptional average transverse rupture strength of 4571 MPa with minimal fluctuations in the measured values. The formation of numerous Co-rich nanophases within the WC grains, which hinder dislocation movement, is the primary reason for the enhanced strength of the cemented carbide.

Key wordscemented carbide    pressing binder    green density    mechanical property    strengthening mechanism
收稿日期: 2024-01-17     
ZTFLH:  TG135  
基金资助:国家重点研发计划项目(2022YFB3708800);国家自然科学基金项目(52171061);国家自然科学基金项目(92163107);国家自然科学基金项目(52101032)
通讯作者: 王海滨,whb@bjut.edu.cn,主要从事硬质合金相关研究;
宋晓艳,xysong@bjut.edu.cn,主要从事金属纳米材料、硬质合金、计算材料学相关研究
作者简介: 王 超,男,1999年生,硕士
图1  添加不同量聚乙二醇(PEG)烧结制备WC-12Co硬质合金的SEM像、WC颗粒尺寸分布及XRD谱
图2  添加不同量PEG的成形坯体的密度以及烧结制备WC-12Co硬质合金垂直和平行于压力方向的尺寸收缩率和磁性钴含量
图3  添加不同量PEG烧结制备WC-12Co硬质合金的硬度、断裂韧性与抗弯强度的变化
图4  PEG质量分数为1.5%时不同浓度的PEG溶液成形坯体密度和烧结制备WC-12Co硬质合金垂直和平行于压力方向收缩率的变化,及与PEG溶液混合后粉末的宏观形貌
图5  PEG质量分数为1.5%时不同浓度PEG溶液成形坯体烧结制备WC-12Co硬质合金显微组织的OM像和XRD谱
图6  PEG质量分数为1.5%时不同浓度PEG溶液成形坯体烧结制备WC-12Co硬质合金的硬度、断裂韧性与抗弯强度的变化
图7  PEG质量分数为1.5%时不同浓度PEG溶液成形坯体烧结制备WC-12Co硬质合金中的裂纹扩展路径及其统计分析
图8  PEG质量分数为1.5%时不同浓度PEG溶液成形坯体烧结制备WC-12Co硬质合金断口形貌的SEM像
图9  PEG质量分数为1.5%及PEG浓度为4.1%时模具填粉量与生坯密度的关系以及不同生坯密度坯体烧结后的尺寸收缩率和烧结制备硬质合金的相对致密度
图10  PEG质量分数为1.5%及PEG浓度为4.1%时坯体密度对烧结制备WC-12Co硬质合金力学性能的影响
图11  PEG质量分数为1.5%及PEG浓度为4.1%时烧结制备WC-12Co硬质合金试样的微结构分析
图12  PEG质量分数为1.5%及PEG浓度为30.0%时烧结制备WC-12Co硬质合金试样的微结构分析
Position in Figs.11a and 12aWCoCCr
P117.7877.160.114.94
P220.5275.230.004.25
P322.9072.170.404.53
P411.3783.260.335.04
P511.4981.771.345.40
P611.8582.600.355.20
表1  PEG质量分数为1.5%时不同浓度PEG溶液成形坯体烧结制备WC-12Co硬质合金试样Co黏结相的成分分析 (mass fraction / %)
图13  PEG质量分数为1.5%及PEG浓度为4.1%时烧结制备的高强度WC-12Co硬质合金试样断口的TEM分析
[1] Wang K W, Zhao K, Liu J L, et al. Interplay of microstructure and mechanical properties of WC-6Co cemented carbides by hot oscillating pressing method [J]. Ceram. Int., 2021, 47: 20731
[2] Ke Z, Zheng Y, Zhang G T, et al. Microstructure and mechanical properties of dual-grain structured WC-Co cemented carbides [J]. Ceram. Int., 2019, 45: 21528
doi: 10.1016/j.ceramint.2019.07.146
[3] Li M, Gong M F, Zhang C Y, et al. Research progress of sintering technique of ultrafine and Nano WC-Co cemented carbides [J]. Mater. Rep., 2020, 34: 15138
[3] 李 萌, 弓满锋, 张程煜 等. 超细、纳米晶WC-Co硬质合金烧结技术的研究现状 [J]. 材料导报, 2020, 34: 15138
[4] Yang J, Roa J J, Odén M, et al. 3D FIB/FESEM tomography of grinding-induced damage in WC-Co cemented carbides [J]. Procedia CIRP, 2020, 87: 385
[5] Saai A, Bjørge R, Dahl F, et al. Adaptation of laboratory tests for the assessment of wear resistance of drill-bit inserts for rotary-percussive drilling of hard rocks [J]. Wear, 2020, 456-457: 203366
[6] Ding Q J, Zheng Y, Ke Z, et al. Effects of fine WC particle size on the microstructure and mechanical properties of WC-8Co cemented carbides with dual-scale and dual-morphology WC grains [J]. Int. J. Refract. Met. Hard Mater., 2020, 87: 105166
[7] Ortner H M, Ettmayer P, Kolaska H, et al. The history of the technological progress of hardmetals [J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 3
[8] Martins V, Rodrigues W C, Ferrandini P L, et al. Comparative studies of WC-Co and WC-Co-Ni composites obtained by conventional powder metallurgy [J]. Mater. Res., 2011, 14: 274
[9] Stanciu V I, Erauw J P, Boilet L, et al. WC-Co composite made with doped binder: The effect of binder proportion on microstructure and mechanical properties [J]. Int. J. Refract. Met. Hard Mater., 2023, 112: 106161
[10] Guo X H. The latest study on extrusion molding binder and production technology of cemented carbide [J]. Rare Met. Cem. Carbides, 2014, 42(6): 46
[10] 郭幸华. 硬质合金挤压成形剂及生产技术研究进展 [J]. 稀有金属与硬质合金, 2014, 42(6): 46
[11] Du W C, Ren X R, Pei Z J, et al. Ceramic binder jetting additive manufacturing: A literature review on density [J]. J. Manuf. Sci. Eng., 2020, 142: 040801
[12] Chen C Y. Research of effects of paraffin as pressing binder on properties of cemented carbide [J]. Fujian Metall., 2016, (5): 42
[12] 陈成艺. 石蜡成形剂改性对硬质合金影响的研究 [J]. 福建冶金, 2016, (5): 42
[13] Chen S L, Fu K, Zhou J H, et al. Study on improvement of paraffin as the molding agent of cemented carbide [J]. Rare Met. Cem. Carbides, 2014, 42(3): 58
[13] 陈双琳, 付 坤, 周建华 等. 硬质合金成形剂石蜡的改进研究 [J]. 稀有金属与硬质合金, 2014, 42(3): 58
[14] Liu J, Liu A H, Liu Y X, et al. Effect of 56# paraffin wax and PEG4000 on formability of cemented carbide inserts [J]. Cem. Carbides, 2023, 40: 134
[14] 刘 娟, 刘安虎, 刘雅璇 等. 56#石蜡和PEG 4000对硬质合金数控刀片成型性能的影响 [J]. 硬质合金, 2023, 40: 134
[15] Qu X H, Gao J X, Qin M L, et al. Application of a wax-based binder in PIM of WC-TiC-Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2005, 23: 273
[16] Eso O, Wang X, Wolf S, et al. Property correlations of WC-Co with modified binders [J]. Int. J. Refract. Met. Hard Mater., 2024, 118: 106482.
[17] Meng X W. Research on performance of new pressing binder in hardmetal [J]. Adv. Mater. Res., 2010, 148-149: 1730
[18] Sun D, Li G S, Lin C F, et al. Research on pre-debinding process of binders for ultrafine cemented carbide bar extrusion molding [J]. Powder Metall. Technol., 2010, 28: 262
[18] 孙 丹, 李广生, 林春芳 等. 超细硬质合金棒料挤压成形剂预脱除工艺研究 [J]. 粉末冶金技术, 2010, 28: 262
[19] Hong H X, Sun A K, Wang D Z. Application of a new pressing binder composed of stearic acid and alcohol-soluble polyurethane resin [J]. Cem. Carbide, 2023, 40: 347
[19] 洪海侠, 孙翱魁, 王德志. 硬脂酸-醇溶性聚氨酯树脂新型成型剂的应用研究 [J]. 硬质合金, 2023, 40: 347
[20] Zwiren A D, Murphy T F. Comparison of SS-316L PM material processed via binder jetting with SS-316L powder processed by pressing and sintering [J]. Int. J. Powder Metall., 2018, 54: 39
[21] Zhang W F. Study on preparation of ultrafine hardmetal rods [D]. Wuhan: Wuhan University of Technology, 2004
[21] 张卫丰. 超细硬质合金棒材的制备研究 [D]. 武汉: 武汉理工大学, 2004
[22] Zhao L L, Zhang Y, Feng W, et al. Effect of shrinkage coefficient on compaction and physical property of cemented carbide die forming [J]. Tool Eng., 2019, 53(9): 62
[22] 赵丽丽, 张 严, 冯 文 等. 硬质合金模压成型收缩系数对压制性能与物理性能的影响 [J]. 工具技术, 2019, 53(9): 62
[23] Liu W B, Song X Y, Zhang J X, et al. Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 115
[24] Liu X W, Song X Y, Wang H B, et al. Complexions in WC-Co cemented carbides [J]. Acta Mater., 2018, 149: 164
[25] Meng X W, Xu T. Application research on a new pressing binder for cemented carbide [J]. Cem. Carbide, 2011, 28: 158
[25] 孟小卫, 徐 涛. 新型硬质合金成型剂应用研究 [J]. 硬质合金, 2011, 28: 158
[26] Zhu E T. Study on the preparation and properties of Nano WC-Co composite powder by in-situ synthesis and high performance cemented carbide [D]. Hefei: Hefei University of Technology, 2021
[26] 朱二涛. 原位合成纳米WC-Co复合粉末及高性能硬质合金制备和性能研究 [D]. 合肥: 合肥工业大学, 2021
[27] Zhao C, Lu H, Wang H B, et al. Seeding ductile nanophase in ceramic grains [J]. Mater. Horiz., 2024, 11: 1908
doi: 10.1039/d3mh02233a pmid: 38334032
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[6] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[7] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[8] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[9] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[10] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[11] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[12] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[13] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[14] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[15] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.