|
|
|
| 热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织及力学性能的影响 |
吴文伟1,2, 向超2( ), 张涛2( ), 邹志航2, 孙勇飞1,2, 刘金鹏2, 张涛2( ), 韩恩厚2,3 |
1 广州大学 物理与材料科学学院 广州 510006 2 广东腐蚀科学与技术创新研究院 广州 510530 3 华南理工大学 材料科学与工程学院 广州 510641 |
|
| Effect of Heat Treatment on Microstructure and Mechanical Properties of 18Ni300 Maraging Steel Fabricated by Selective Laser Melting |
WU Wenwei1,2, XIANG Chao2( ), ZHANG Tao2( ), ZOU Zhihang2, SUN Yongfei1,2, LIU Jinpeng2, ZHANG Tao2( ), HAN En-Hou2,3 |
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 2 Institute of Corrosion Science and Technology, Guangzhou 510530, China 3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China |
引用本文:
吴文伟, 向超, 张涛, 邹志航, 孙勇飞, 刘金鹏, 张涛, 韩恩厚. 热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织及力学性能的影响[J]. 金属学报, 2025, 61(10): 1515-1530.
Wenwei WU,
Chao XIANG,
Tao ZHANG,
Zhihang ZOU,
Yongfei SUN,
Jinpeng LIU,
Tao ZHANG,
En-Hou HAN.
Effect of Heat Treatment on Microstructure and Mechanical Properties of 18Ni300 Maraging Steel Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2025, 61(10): 1515-1530.
| [1] |
Ma R L, Peng C Q, Wang R C, et al. Progress in selective laser melted aluminum alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 2773
|
| [1] |
马如龙, 彭超群, 王日初 等. 选区激光熔化铝合金的研究进展 [J]. 中国有色金属学报, 2020, 30: 2773
|
| [2] |
Xu D, Gao H B, Dong T, et al. Research progress of metal powder for additive manufacturing [J]. Chin. J. Nonferrous Met., 2021, 31: 245
|
| [2] |
许 德, 高华兵, 董 涛 等. 增材制造用金属粉末研究进展 [J]. 中国有色金属学报, 2021, 31: 245
|
| [3] |
Wang Y N. Research on composition optimization of maraging steel and its selective laser melting process [D]. Harbin: Harbin Institute of Technology, 2020
|
| [3] |
王亚男. 马氏体时效钢成分优化及其激光选区熔化成型工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
|
| [4] |
Yin S, Chen C Y, Yan X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel [J]. Addit. Manuf., 2018, 22: 592
|
| [5] |
Li H, Zhao W J, Li R D, et al. Progress on additive manufacturing of maraging steel [J]. Chin. J. Lasers, 2022, 49(14): 1402102
|
| [5] |
李 虎, 赵伟江, 李瑞迪 等. 增材制造马氏体时效钢的研究进展 [J]. 中国激光, 2022, 49(14): 1402102
|
| [6] |
Feng X T, Li J M, Geng S, et al. Effect of heat treatment on low-cycle fatigue properties of selective laser melted IN718 at room temperature [J]. Chin. J. Lasers, 2023, 50(16): 1602301
|
| [6] |
冯星涛, 李健民, 耿 硕 等. 热处理对激光选区熔化IN718合金室温低周疲劳性能的影响 [J]. 中国激光, 2023, 50(16): 1602301
|
| [7] |
Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
| [7] |
谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
| [8] |
Tekin T, Ischia G, Naclerio F, et al. Effect of a direct aging heat treatment on the microstructure and the tensile properties of a 18Ni-300 maraging steel produced by laser powder bed fusion [J]. Mater. Sci. Eng., 2023, A872: 144921
|
| [9] |
Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
|
| [10] |
Zhao Z J, Dong C F, Kong D C, et al. Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel [J]. Mater. Charact., 2021, 182: 111514
|
| [11] |
Wang Y N, Luo L S, Liu T, et al. Tuning process parameters to optimize microstructure and mechanical properties of novel maraging steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, A823: 141740
|
| [12] |
Allam T, Pradeep K G, Köhnen P, et al. Tailoring the nanostructure of laser powder bed fusion additively manufactured maraging steel [J]. Addit. Manuf., 2020, 36: 101561
|
| [13] |
Bai Y C, Wang D, Yang Y Q, et al. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting [J]. Mater. Sci. Eng., 2019, A760: 105
|
| [14] |
Paul M J, Muniandy Y, Kruzic J J, et al. Effect of heat treatment on the strength and fracture resistance of a laser powder bed fusion-processed 18Ni-300 maraging steel [J]. Mater. Sci. Eng., 2022, A844: 143167
|
| [15] |
Kučerová L, Burdová K, Jeníček Š, et al. Effect of solution annealing and precipitation hardening at 250 oC-550 oC on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel [J]. Mater. Sci. Eng., 2021, A814: 141195
|
| [16] |
Mei X Y, Yan Y, Fu H D, et al. Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel [J]. Addit. Manuf., 2022, 58: 103071
|
| [17] |
Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
|
| [18] |
Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review [J]. Mater. Sci. Eng., 2020, A795: 140023
|
| [19] |
Niu M C, Yin L C, Yang K, et al. Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates [J]. Acta Mater., 2021, 209: 116788
|
| [20] |
Casati R, Lemke J, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6: 218
|
| [21] |
Xiang C, Zhang T, Wu W W, et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melting 18Ni300 maraging steel [J]. Chin. J. Lasers, 2024, 51(16):1602302
|
| [21] |
向 超, 张 涛, 吴文伟 等. 热处理对选区激光熔化18Ni300马氏体时效钢微观组织和力学性能的影响 [J]. 中国激光, 2024, 51(16): 1602302
|
| [22] |
Wang J, Tao Q, Fan J T, et al. Enhanced mechanical properties of a high-carbon martensite steel processed by heavy warm rolling and tempering [J]. Mater. Sci. Eng., 2023, A872: 144958
|
| [23] |
Cayron C, Barcelo F, Carlan Y D. The mechanisms of the fcc-bcc martensitic transformation revealed by pole figures [J]. Acta Mater., 2010, 58: 1395
|
| [24] |
Kučerová L, Zetková I, Jandová A, et al. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel [J]. Mater. Sci. Eng., 2019, A750: 70
|
| [25] |
Bae K, Shin D, Kim J H, et al. Influence of post heat treatment condition on corrosion behavior of 18Ni300 maraging steel manufactured by laser powder bed fusion [J]. Micromachines, 2022, 13: 1977
|
| [26] |
Kong D C, Dong C F, Wei S L, et al. About metastable cellular structure in additively manufactured austenitic stainless steels [J]. Addit. Manuf., 2021, 38: 101804
|
| [27] |
Bertsch K M, Meric De Bellefon G, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
|
| [28] |
Hu B. Study on fine composition regulation and stabilization of retained austenite in low carbon high strength steels [D]. Beijing: University of Science and Technology Beijing, 2022
|
| [28] |
胡 斌. 低碳高强钢中残余奥氏体的成分精细调控及稳定性研究 [D]. 北京: 北京科技大学, 2022
|
| [29] |
Song Y S, Liao Y, Li C W, et al. Effects of reversed austenite on the cryogenic impact toughness of 0Cr16Ni5Mo1 super martensitic stainless steel [J]. Acta Metall. Sin., 2025, 61: 687
doi: 10.11900/0412.1961.2023.00100
|
| [29] |
宋逸思, 廖 瑜, 李传维, 等. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响 [J]. 金属学报, 2025, 61: 687
doi: 10.11900/0412.1961.2023.00100
|
| [30] |
Mai H L, Cui X Y, Scheiber D, et al. The segregation of transition metals to iron grain boundaries and their effects on cohesion [J]. Acta Mater., 2022, 231: 117902
|
| [31] |
Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Mater., 2019, 179: 296
|
| [32] |
Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Understanding the factors controlling the hardness in martensitic steels [J]. Scr. Mater., 2016, 110: 96
|
| [33] |
Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. A model for the microstructure behaviour and strength evolution in lath martensite [J]. Acta Mater., 2015, 98: 81
|
| [34] |
Galindo-Nava E I, Rainforth W M, Rivera-Díaz-Del-Castillo P E J. Predicting microstructure and strength of maraging steels: Elemental optimisation [J]. Acta Mater., 2016, 117: 270
|
| [35] |
Yang T, Chai L J, Wang H, et al. Strength-ductility synergy through tailoring heterostructures of hot-rolled ferritic-martensitic steels containing varying Si contents [J]. Mater. Sci. Eng., 2023, A886: 145712
|
| [36] |
Mu Y K, He L H, Deng S H, et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility [J]. Acta Mater., 2022, 232: 117975
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|