Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1515-1530    DOI: 10.11900/0412.1961.2024.00009
  研究论文 本期目录 | 过刊浏览 |
热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织及力学性能的影响
吴文伟1,2, 向超2(), 张涛2(), 邹志航2, 孙勇飞1,2, 刘金鹏2, 张涛2(), 韩恩厚2,3
1 广州大学 物理与材料科学学院 广州 510006
2 广东腐蚀科学与技术创新研究院 广州 510530
3 华南理工大学 材料科学与工程学院 广州 510641
Effect of Heat Treatment on Microstructure and Mechanical Properties of 18Ni300 Maraging Steel Fabricated by Selective Laser Melting
WU Wenwei1,2, XIANG Chao2(), ZHANG Tao2(), ZOU Zhihang2, SUN Yongfei1,2, LIU Jinpeng2, ZHANG Tao2(), HAN En-Hou2,3
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
2 Institute of Corrosion Science and Technology, Guangzhou 510530, China
3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
引用本文:

吴文伟, 向超, 张涛, 邹志航, 孙勇飞, 刘金鹏, 张涛, 韩恩厚. 热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织及力学性能的影响[J]. 金属学报, 2025, 61(10): 1515-1530.
Wenwei WU, Chao XIANG, Tao ZHANG, Zhihang ZOU, Yongfei SUN, Jinpeng LIU, Tao ZHANG, En-Hou HAN. Effect of Heat Treatment on Microstructure and Mechanical Properties of 18Ni300 Maraging Steel Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2025, 61(10): 1515-1530.

全文: PDF(9726 KB)   HTML
摘要: 

近年来,18Ni300马氏体时效钢在增材制造随形冷却模具中得到广泛应用,而热处理工艺是决定打印件组织和性能否满足服役要求的重要因素。本工作研究了直接时效和固溶时效2种典型热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织和力学性能的影响。结果表明,打印态、直接时效态和固溶时效态试样中均存在奥氏体,且与马氏体基体存在经典Nishiyama-Wassermann取向关系。打印态试样元素分布均匀,存在明显的熔池结构和胞状组织,胞状组织由位错缠结形成,在晶界处存在少量长条状的奥氏体。直接时效处理后胞状组织和熔池结构发生部分溶解,Ni在部分晶界和胞壁处富集,具有较高含量的奥氏体。固溶时效处理后获得近全马氏体组织,元素分布均匀,胞状组织和熔池结构基本消失,Ni在部分晶界处富集,存在微量奥氏体。打印态试样的奥氏体无明显化学成分偏析,为残余奥氏体;而直接时效态和固溶时效态试样的奥氏体存在Ni富集,为逆转奥氏体。直接时效和固溶时效处理使Ni在部分晶界和胞壁处富集,Ni富集促进逆转奥氏体生成并使其稳定存在。打印态试样的屈服强度为(1090 ± 1.5) MPa,直接时效和固溶时效处理后基体析出大量棒状η-Ni3Ti金属间化合物,强度提升,其中,直接时效处理后屈服强度可达(1854 ± 13.2) MPa,固溶时效处理后屈服强度可达(2059 ± 9.9) MPa。打印态试样的强度主要由马氏体相变强化和固溶强化贡献,而直接时效态和固溶时效态试样的强度主要由马氏体相变强化、固溶强化和析出强化贡献,且固溶时效态试样具有更强的析出强化效果,这主要是由于固溶时效态试样的析出相具有更高的密度和长径比。

关键词 增材制造马氏体时效钢微观组织热处理奥氏体    
Abstract

Recently, 18Ni300 maraging steel has been widely used for preparing conformal cooling molds via additive manufacturing. The requirements pertaining to the service life of these molds have become more stringent, but whether the microstructures and properties of these molds can meet the service requirements largely depends on the applied heat treatment. This paper studies the effects of two typical heat treatment processes—direct aging and solution aging—on the microstructure and tensile properties of 18Ni300 maraging steel fabricated via selective laser melting. In all prepared specimens, austenite was present and the classical Nishiyama-Wassermann orientation relationship was observed between austenite and the martensitic matrix. Elements in the as-prepared samples were evenly distributed, with obvious molten-pool and cell structures composed mainly of dislocation entanglements. In addition, a small number of long austenite strips appeared at the grain boundaries. Direct aging partially dissolved the cell and molten-pool structures and enriched Ni at some grain boundaries. The direct-aging sample exhibited relatively high austenite content. Meanwhile, the solution-aging sample exhibited a nearly complete martensite structure with evenly distributed elements. In addition, cell and molten-pool structures were almost completely removed and Ni was enriched at some grain boundaries. Further, trace amounts of austenite remained. Austenite retained in the as-prepared samples showed no obvious chemical composition segregation. Austenite present in the direct-aging and solution-aging samples was Ni enriched and confirmed to be of the reverted type. Ni at certain grain boundaries and cell walls was enriched due to cell-wall dissolution during the direct- and solution-aging treatments. Ni enrichment promoted the formation and stability of reverted austenite. Numerous round rod-shaped Ni3Ti intermetallic compounds precipitated from the matrix after both the treatments, greatly increasing the yield strength from (1090 ± 1.5) MPa of the untreated sample to (1854 ± 13.2) MPa and (2059 ± 9.9) MPa of the direct-aging and solution-aging samples, respectively. The strength of the as-prepared samples was mainly contributed by austenite-to-martensitic phase transformation and solid-solution strengthening, while those of the direct- and solution-aging samples were mainly contributed by austenite-to-martensitic phase transformation, solid-solution strengthening, and precipitation strengthening. Moreover, the solution-aging samples exhibited greater precipitation strengthening than the direct-aging samples, mainly owing to the high density and large length-diameter ratio of their precipitates.

Key wordsadditive manufacturing    maraging steel    microstructure    heat treatment    austenite
收稿日期: 2024-01-12     
ZTFLH:  TG142.1+5  
基金资助:广东腐蚀科学与技术创新研究院青年创新基金项目(E1551601)
通讯作者: 向 超,cxiang@icost.ac.cn,主要从事先进金属材料增材制造技术研究;
张 涛,zhangtao@gzhu.edu.cn,主要从事先进核能材料、轻质合金材料研究
作者简介: 吴文伟,男,1999年生,硕士生
图1  18Ni300马氏体时效钢粉末形貌和粒径分布,拉伸试样和冲击试样的成型和尺寸示意图以及选区激光熔化(SLM)成型时使用的扫描策略示意图
图2  不同热处理状态SLM 18Ni300试样的XRD谱
图3  不同热处理状态SLM 18Ni300试样的OM像
图4  不同热处理状态SLM 18Ni300试样的SEM像
图5  不同热处理状态SLM 18Ni300试样的EBSD像
图6  AB试样的TEM表征结果
图7  DA试样的TEM表征结果
图8  SA试样的TEM表征结果
图9  SA试样逆转奥氏体的TEM表征结果
图10  DA和SA试样中析出相的TEM像和相应区域的EDS元素分析,及单个析出相的EDS线扫描结果
图11  DA和SA试样析出相的HRTEM像和快速Fourier变换(FFT)结果
图12  不同热处理状态SLM 18Ni300试样的工程应力-应变曲线
StateYS / MPaUTS / MPaEl / %Hardness / HRC
AB1090 ± 1.51147 ± 1.514.5 ± 1.436.6 ± 0.6
DA1854 ± 13.21931 ± 8.18.5 ± 1.052.3 ± 0.3
SA2059 ± 9.92114 ± 9.06.0 ± 1.454.7 ± 0.4
表1  不同状态SLM 18Ni300试样的力学性能
图13  不同热处理状态SLM 18Ni300试样的拉伸断口形貌SEM像
图14  不同热处理状态SLM 18Ni300试样的微观组织演变示意图
图15  不同热处理状态SLM 18Ni300试样的局部取向差(KAM)统计图
图16  不同热处理状态SLM 18Ni300试样屈服强度的理论值和测试值
[1] Ma R L, Peng C Q, Wang R C, et al. Progress in selective laser melted aluminum alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 2773
[1] 马如龙, 彭超群, 王日初 等. 选区激光熔化铝合金的研究进展 [J]. 中国有色金属学报, 2020, 30: 2773
[2] Xu D, Gao H B, Dong T, et al. Research progress of metal powder for additive manufacturing [J]. Chin. J. Nonferrous Met., 2021, 31: 245
[2] 许 德, 高华兵, 董 涛 等. 增材制造用金属粉末研究进展 [J]. 中国有色金属学报, 2021, 31: 245
[3] Wang Y N. Research on composition optimization of maraging steel and its selective laser melting process [D]. Harbin: Harbin Institute of Technology, 2020
[3] 王亚男. 马氏体时效钢成分优化及其激光选区熔化成型工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
[4] Yin S, Chen C Y, Yan X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel [J]. Addit. Manuf., 2018, 22: 592
[5] Li H, Zhao W J, Li R D, et al. Progress on additive manufacturing of maraging steel [J]. Chin. J. Lasers, 2022, 49(14): 1402102
[5] 李 虎, 赵伟江, 李瑞迪 等. 增材制造马氏体时效钢的研究进展 [J]. 中国激光, 2022, 49(14): 1402102
[6] Feng X T, Li J M, Geng S, et al. Effect of heat treatment on low-cycle fatigue properties of selective laser melted IN718 at room temperature [J]. Chin. J. Lasers, 2023, 50(16): 1602301
[6] 冯星涛, 李健民, 耿 硕 等. 热处理对激光选区熔化IN718合金室温低周疲劳性能的影响 [J]. 中国激光, 2023, 50(16): 1602301
[7] Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
[7] 谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
[8] Tekin T, Ischia G, Naclerio F, et al. Effect of a direct aging heat treatment on the microstructure and the tensile properties of a 18Ni-300 maraging steel produced by laser powder bed fusion [J]. Mater. Sci. Eng., 2023, A872: 144921
[9] Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
[10] Zhao Z J, Dong C F, Kong D C, et al. Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel [J]. Mater. Charact., 2021, 182: 111514
[11] Wang Y N, Luo L S, Liu T, et al. Tuning process parameters to optimize microstructure and mechanical properties of novel maraging steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, A823: 141740
[12] Allam T, Pradeep K G, Köhnen P, et al. Tailoring the nanostructure of laser powder bed fusion additively manufactured maraging steel [J]. Addit. Manuf., 2020, 36: 101561
[13] Bai Y C, Wang D, Yang Y Q, et al. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting [J]. Mater. Sci. Eng., 2019, A760: 105
[14] Paul M J, Muniandy Y, Kruzic J J, et al. Effect of heat treatment on the strength and fracture resistance of a laser powder bed fusion-processed 18Ni-300 maraging steel [J]. Mater. Sci. Eng., 2022, A844: 143167
[15] Kučerová L, Burdová K, Jeníček Š, et al. Effect of solution annealing and precipitation hardening at 250 oC-550 oC on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel [J]. Mater. Sci. Eng., 2021, A814: 141195
[16] Mei X Y, Yan Y, Fu H D, et al. Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel [J]. Addit. Manuf., 2022, 58: 103071
[17] Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
[18] Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review [J]. Mater. Sci. Eng., 2020, A795: 140023
[19] Niu M C, Yin L C, Yang K, et al. Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates [J]. Acta Mater., 2021, 209: 116788
[20] Casati R, Lemke J, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6: 218
[21] Xiang C, Zhang T, Wu W W, et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melting 18Ni300 maraging steel [J]. Chin. J. Lasers, 2024, 51(16):1602302
[21] 向 超, 张 涛, 吴文伟 等. 热处理对选区激光熔化18Ni300马氏体时效钢微观组织和力学性能的影响 [J]. 中国激光, 2024, 51(16): 1602302
[22] Wang J, Tao Q, Fan J T, et al. Enhanced mechanical properties of a high-carbon martensite steel processed by heavy warm rolling and tempering [J]. Mater. Sci. Eng., 2023, A872: 144958
[23] Cayron C, Barcelo F, Carlan Y D. The mechanisms of the fcc-bcc martensitic transformation revealed by pole figures [J]. Acta Mater., 2010, 58: 1395
[24] Kučerová L, Zetková I, Jandová A, et al. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel [J]. Mater. Sci. Eng., 2019, A750: 70
[25] Bae K, Shin D, Kim J H, et al. Influence of post heat treatment condition on corrosion behavior of 18Ni300 maraging steel manufactured by laser powder bed fusion [J]. Micromachines, 2022, 13: 1977
[26] Kong D C, Dong C F, Wei S L, et al. About metastable cellular structure in additively manufactured austenitic stainless steels [J]. Addit. Manuf., 2021, 38: 101804
[27] Bertsch K M, Meric De Bellefon G, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
[28] Hu B. Study on fine composition regulation and stabilization of retained austenite in low carbon high strength steels [D]. Beijing: University of Science and Technology Beijing, 2022
[28] 胡 斌. 低碳高强钢中残余奥氏体的成分精细调控及稳定性研究 [D]. 北京: 北京科技大学, 2022
[29] Song Y S, Liao Y, Li C W, et al. Effects of reversed austenite on the cryogenic impact toughness of 0Cr16Ni5Mo1 super martensitic stainless steel [J]. Acta Metall. Sin., 2025, 61: 687
doi: 10.11900/0412.1961.2023.00100
[29] 宋逸思, 廖 瑜, 李传维, 等. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响 [J]. 金属学报, 2025, 61: 687
doi: 10.11900/0412.1961.2023.00100
[30] Mai H L, Cui X Y, Scheiber D, et al. The segregation of transition metals to iron grain boundaries and their effects on cohesion [J]. Acta Mater., 2022, 231: 117902
[31] Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Mater., 2019, 179: 296
[32] Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Understanding the factors controlling the hardness in martensitic steels [J]. Scr. Mater., 2016, 110: 96
[33] Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. A model for the microstructure behaviour and strength evolution in lath martensite [J]. Acta Mater., 2015, 98: 81
[34] Galindo-Nava E I, Rainforth W M, Rivera-Díaz-Del-Castillo P E J. Predicting microstructure and strength of maraging steels: Elemental optimisation [J]. Acta Mater., 2016, 117: 270
[35] Yang T, Chai L J, Wang H, et al. Strength-ductility synergy through tailoring heterostructures of hot-rolled ferritic-martensitic steels containing varying Si contents [J]. Mater. Sci. Eng., 2023, A886: 145712
[36] Mu Y K, He L H, Deng S H, et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility [J]. Acta Mater., 2022, 232: 117975
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 谭若涵, 宋永锋, 陈超, 李丹, 成庶, 李雄兵. 增材制造钛合金等效弹性张量的细观力学建模与实验研究[J]. 金属学报, 2025, 61(9): 1438-1448.
[4] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[5] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[6] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[7] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[8] 李雪, 喻政, 解志文, 王金龙, 陈明辉, 王福会. 耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为[J]. 金属学报, 2025, 61(8): 1245-1255.
[9] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[10] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[11] 蔡星周, 刘胜杰, 张禹森, 李小龙, 张宇鹤, 张文彬, 陈雷, 金淼. Mn偏析对0.3C-11Mn-2.7Al-1.8Si-Fe中锰钢力学性能的影响及作用机制[J]. 金属学报, 2025, 61(7): 1024-1034.
[12] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[13] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[14] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[15] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.