|
|
耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为 |
李雪1, 喻政1, 解志文2, 王金龙1, 陈明辉1( ), 王福会1 |
1.东北大学 材料科学与工程学院 沈阳 110819 2.辽宁科技大学 机械工程与自动化学院 鞍山 114051 |
|
Corrosion Behavior of Heat-Resistant Steels and Its Enamel Coatings in CO2 Atmosphere at 600 oC |
LI Xue1, YU Zheng1, XIE Zhiwen2, WANG Jinlong1, CHEN Minghui1( ), WANG Fuhui1 |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.School of Mechanical Engineering & Automation, University of Science and Technology Liaoning, Anshan 114051, China |
引用本文:
李雪, 喻政, 解志文, 王金龙, 陈明辉, 王福会. 耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为[J]. 金属学报, 2025, 61(8): 1245-1255.
Xue LI,
Zheng YU,
Zhiwen XIE,
Jinlong WANG,
Minghui CHEN,
Fuhui WANG.
Corrosion Behavior of Heat-Resistant Steels and Its Enamel Coatings in CO2 Atmosphere at 600 oC[J]. Acta Metall Sin, 2025, 61(8): 1245-1255.
[1] |
Zhao X B, Lu J T, Yuan Y, et al. Analysis of supercritical carbon dioxide brayton cycle and candidate materials of key hot components for power plants [J]. Proc. CSEE, 2016, 36: 154
|
[1] |
赵新宝, 鲁金涛, 袁 勇 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析 [J]. 中国电机工程学报, 2016, 36: 154
|
[2] |
Furukawa T, Inagaki Y, Aritomi M. Corrosion behavior of FBR structural materials in high temperature supercritical carbon dioxide [J]. J. Power Energy Syst., 2010, 4: 252
|
[3] |
Gui Y, Liang Z Y, Wang S, et al. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2023, 211: 110857
|
[4] |
Lu J T, Zhao X B, Yuan Y, et al. Corrosion behavior of alloys in supercritical CO2 brayton cycle power generation [J]. Proc. CSEE, 2016, 36: 739.
|
[4] |
鲁金涛, 赵新宝, 袁 勇 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 [J]. 中国电机工程学报, 2016, 36: 739
|
[5] |
Cao G, Firouzdor V, Sridharan K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide [J]. Corros. Sci., 2012, 60: 246
|
[6] |
Rouillarda F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high temperature CO2 [J]. Corros. Sci., 2016, 105: 120
|
[7] |
Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49:30
|
[7] |
肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49: 30
|
[8] |
Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
|
[8] |
肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为[J]. 中国电机工程学报, 2023, 43: 4198
|
[9] |
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
|
[10] |
Yang H, Liu W W, Gong B, et al. Corrosion behavior of typical structural steels in 500 oC, 600 oC and high pressure supercritical carbon dioxide conditions [J]. Corros. Sci., 2021, 192: 109801
|
[11] |
Chena H S, Kima S H, Longb C S, et al. Oxidation behavior of high-strength FeCrAl alloys in a high-temperature supercritical carbon dioxide environment [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 731
|
[12] |
Meier G H, Jung K Y, Mu N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys [J]. Oxid. Met., 2010, 74: 319
|
[13] |
Mu N, Jung K Y, Yanar N M, et al. Water vapour effects on the oxidation behaviour of Fe-Cr and Ni-Cr alloys in atmospheres relevant to oxy-fuel combustion [J]. Oxid. Met., 2012, 78: 221
|
[14] |
Gheno T, Monceau D, Young D J. Mechanism of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide [J]. Corros. Sci., 2012, 64: 222
|
[15] |
Fujii C T, Meussner R A. Carburization of Fe-Cr alloys during oxidation in dry carbon dioxide [J]. J. Electrochem. Soc., 1967, 114: 435
|
[16] |
Huang C L, Zhu M, Lu J T, et al. Effect of aluminide coating on the mechanical properties of T92 steel [J]. Therm. Power Gener., 2023, 52: 113
|
[16] |
黄春林, 朱 明, 鲁金涛 等. 铝化物涂层对T92钢高温力学性能的影响 [J]. 热力发电, 2023, 52: 113
|
[17] |
Wu J J, Jiang M Y, Liu M, et al. Improvement of the high-temperature oxidation resistance of aluminide coating by SiO2 interlayer [J]. Surf. Technol., 2020, 49(1): 56
|
[17] |
吴景佳, 蒋梅燕, 刘 敏 等. 利用SiO2中间层提高铝化物涂层的高温防护性能 [J]. 表面技术, 2020, 49: 56
|
[18] |
Nguyen T D, Peng X, Zhang J Q, et al. Corrosion resistance of chromised and aluminised coatings in wet CO2 gas at 650 oC [J]. Surf. Coat. Technol., 2017, 316: 226
|
[19] |
Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
|
[19] |
严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345
|
[20] |
Yan G S, Yu W S, Shen S P. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction [J]. Corros. Sci., 2020, 173: 108760
|
[21] |
Yan G S, Yu W S, Shen S P. High-temperature nanoindentation for temperature-dependent mechanical behavior of enamel coating [J]. Surf. Coat. Technol., 2019, 374: 541
|
[22] |
Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
|
[23] |
Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanism [J]. Corros. Sci., 2014, 82: 316
|
[24] |
Chen K, Xie J J, Li W F, et al. Excellent hot-corrosion and thermal-shock resistance of metal-enamel composite coating on martensitic stainless steel enabled by interface engineering [J]. Corros. Sci., 2022, 202: 110286
|
[25] |
Yin K, Yang Y, Frank Cheng Y. Permeability of coal tar enamel coating to cathodic protection current on pipelines [J]. Constr. Build. Mater., 2018, 192: 20
|
[26] |
Liu H Y, Feng Y J, Li P, et al. Enhanced plasticity of the oxide scales by in-situ formed Cr2O3/Cr heterostructures for Cr-based coatings on Zr alloy in 1200 oC steam [J]. Corro. Sci., 2021, 184: 109361
|
[27] |
Chyrkin A, Pillai R, Galiullin T, et al. External α-Al2O3 scale on Ni-base alloy 602 CA—Part I: Formation and long-term stability [J]. Corros. Sci., 2017, 124: 138
|
[28] |
Wen S H, Zhou C G, Sha J B. Improvement of oxidation resistance of a Mo-62Si-5B (at.%) alloy at 1250 oC and 1350 oC via an in situ pre-formed SiO2 fabricated by spark plasma sintering [J]. Corros. Sci., 2017, 127: 175
|
[29] |
Chen D H, Xu X F, Zhao Y, et al. Superior mechanical properties of M35 high-speed steel obtained by controlling carbide precipitation and distribution via electropulsing treatment [J]. Mater. Sci. Eng., 2023, A888: 145691
|
[30] |
Rouillard F, Moine G, Martinelli L, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature I: Mechanism of void-induced duplex oxide formation [J]. Oxid. Met., 2012, 77: 27
|
[31] |
Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
|
[32] |
Young D J, Zhang J Q. Alloy corrosion by hot CO2 gases [J]. JOM, 2018, 70: 1493
|
[33] |
Ujihara T, Fujiwara K, Sazaki G, et al. Evaluation of the diffusion coefficients in liquid GaGe binary alloys using a novel method based on Fick's first law [J]. J. Non-Cryst. Solids, 2002, 312: 196
|
[34] |
Xu L Q. Research on phase transformation behaviors and heat-treatment processes of T92 ferritic steel [D]. Tianjin: Tianjin University, 2013
|
[34] |
许林青. T92铁素体钢相变行为及热处理工艺的研究 [D]. 天津: 天津大学, 2013
|
[35] |
Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|