Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1245-1255    DOI: 10.11900/0412.1961.2023.00462
  研究论文 本期目录 | 过刊浏览 |
耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为
李雪1, 喻政1, 解志文2, 王金龙1, 陈明辉1(), 王福会1
1.东北大学 材料科学与工程学院 沈阳 110819
2.辽宁科技大学 机械工程与自动化学院 鞍山 114051
Corrosion Behavior of Heat-Resistant Steels and Its Enamel Coatings in CO2 Atmosphere at 600 oC
LI Xue1, YU Zheng1, XIE Zhiwen2, WANG Jinlong1, CHEN Minghui1(), WANG Fuhui1
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.School of Mechanical Engineering & Automation, University of Science and Technology Liaoning, Anshan 114051, China
引用本文:

李雪, 喻政, 解志文, 王金龙, 陈明辉, 王福会. 耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为[J]. 金属学报, 2025, 61(8): 1245-1255.
Xue LI, Zheng YU, Zhiwen XIE, Jinlong WANG, Minghui CHEN, Fuhui WANG. Corrosion Behavior of Heat-Resistant Steels and Its Enamel Coatings in CO2 Atmosphere at 600 oC[J]. Acta Metall Sin, 2025, 61(8): 1245-1255.

全文: PDF(4121 KB)   HTML
摘要: 

超临界二氧化碳(S-CO2)布雷顿(Brayton)循环系统具有较高的能量转换效率且对环境友好,因此在核能发电等领域有广阔的应用前景。电站中的热端部件材料因长期在高温CO2环境中服役而面临严重的腐蚀问题。铁素体钢和奥氏体钢在该环境中的腐蚀机制有所不同,不能仅依靠Cr含量预测合金的腐蚀寿命。因此,本工作研究了铁素体钢T92及奥氏体钢316L在600 ℃、CO2气氛中的腐蚀行为。结果表明,2种钢均发生了严重的氧化和渗C,在其表面均形成了外侧富Fe且内侧富Cr的双层氧化膜,并在钢的内部检测到明显的碳化物。316L奥氏体钢具有明显比T92铁素体钢更低的氧化速率,腐蚀500 h后的增重分别为1.38和10.51 mg/cm2。2者发生渗C的深度差别不大,分别约为241和329 μm。为了阻止CO2对2种钢的腐蚀,开发了一种新型的耐腐蚀硼硅酸盐搪瓷涂层。采用喷涂-烧结法制备的搪瓷涂层在600 ℃、CO2气氛中具有较高的热稳定性,且与基体界面结合良好,有效阻隔了CO2的入侵,阻止了渗C反应的发生,并使钢的腐蚀增重降低了至少2个数量级。

关键词 316L奥氏体钢T92铁素体钢搪瓷涂层CO2腐蚀    
Abstract

Compared to the conventional Rankine steam cycle, the Brayton cycle system utilizing supercritical carbon dioxide (S-CO2) as the working fluid offers significant advantages, including higher energy conversion efficiency, a more compact structure, enhanced safety, economic benefits, and a superior overall energy efficiency ratio. Consequently, the S-CO2 Brayton cycle system holds promise for application in thermal power generation, fourth-generation nuclear power, new gas turbines, solar power generation, and other fields. In various operating conditions, material corrosion in high-temperature CO2 environments has consistently been identified as a primary factor leading to the degradation of superheaters and reheaters. The corrosion mechanisms of steel in CO2, particularly the differences between ferritic and austenitic steels, are not yet fully understood. T92 ferritic steel and 316L austenitic steel are widely recognized as preferred materials and have been extensively utilized as superheater/reheater components in power stations. Enamel coating has been considered a cost-effective solution for enhancing the oxidation resistance of steels without considerably degrading their mechanical properties. Therefore, this work investigated the corrosion behaviors of T92 ferritic steel and 316L austenitic steel, and enamel-coated steels in CO2 at 600 oC. Results revealed rapid oxidation and carbon invasion for both T92 and 316L steels, with 316L austenitic steel exhibiting superior oxidation resistance and slightly better carbon invasion resistance due to its higher chromium content. Meanwhile, the mass gain after 500 h of corrosion was significantly higher for T92 ferritic steel than for 316L austenitic steel, reaching 10.51 and 1.38 mg/cm², respectively. The oxidation kinetics of all samples follows an approximately parabolic trend. A double-layered structure comprising an outer Fe-rich oxide layer and an inner Cr-rich oxide layer is formed on the surface of both steels. The interface between the inward growth of the inner layer and outward growth of the outer oxide layer corresponds to the initial steel surface. In addition, rapid carbon invasion and carburization cause more metal damage than oxidation. While T92 ferritic steel and 316L austenitic steel exhibited comparable resistance to carbon invasion, differences in their structures led to variations in carbide distribution within the steels. T92 ferritic steel demonstrated homogeneous carbide formation due to its high internal diffusion channel density, resulting in an intrusion depth of 329 μm after 500 h of corrosion. In contrast, carbides primarily precipitated at the austenitic grain boundaries of 316L austenitic steel, extending up to 241 μm within the same corrosion timeframe. Enamel-coated samples exhibited excellent corrosion resistance by effectively inhibiting oxidation and carburization reactions through isolating the contact between CO2 and the steels. Consequently, the corrosion mass gain in these samples was reduced by at least two orders of magnitude. Furthermore, the glass phase of the enamel maintained thermal stability throughout the corrosion process, while the strong bond between the enamel coating and substrate provided long-term protection against thermal stress effects.

Key wordsaustenite steel 316L    ferritic steel T92    enamel coating    CO2 corrosion
收稿日期: 2023-11-28     
ZTFLH:  TG17  
基金资助:教育部中央高校基本科研业务费项目(N2302018);宁波余姚市科技创新项目(2023J03010010)
通讯作者: 陈明辉,mhchen@mail.neu.edu.cn,主要从事高温腐蚀与防护涂层研究
Corresponding author: CHEN Minghui, professor, Tel: (024)83691562, E-mail: mhchen@mail.neu.edu.cn
作者简介: 李 雪,女,1999年生,硕士
图1  4种试样在600 ℃、CO2气氛中腐蚀500 h的动力学曲线
图2  T92和316L钢在600 ℃、CO2气氛中腐蚀500 h前后的XRD谱
图3  T92和316L钢在600 ℃、CO2气氛中腐蚀500 h后的表面SEM像
图4  T92铁素体钢在600 ℃、CO2气氛中腐蚀500 h后的截面SEM像及EPMA面分布图
图5  316L奥氏体钢在600 ℃、CO2气氛中腐蚀500 h后的截面SEM像及EPMA面分布图
图6  搪瓷粉末的DSC曲线
图7  T92-TC和316L-TC试样在600 ℃、CO2气氛中未经腐蚀与腐蚀500 h后的XRD谱
图8  T92-TC和316L-TC未经腐蚀和在600 ℃、CO2气氛中腐蚀500 h后的截面SEM像
图9  4种试样在600 ℃、CO2气氛中腐蚀500 h后的截面OM像
图10  T92和316L在600 ℃、CO2气氛中腐蚀500 h后截面中C元素的EPMA线扫描结果
[1] Zhao X B, Lu J T, Yuan Y, et al. Analysis of supercritical carbon dioxide brayton cycle and candidate materials of key hot components for power plants [J]. Proc. CSEE, 2016, 36: 154
[1] 赵新宝, 鲁金涛, 袁 勇 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析 [J]. 中国电机工程学报, 2016, 36: 154
[2] Furukawa T, Inagaki Y, Aritomi M. Corrosion behavior of FBR structural materials in high temperature supercritical carbon dioxide [J]. J. Power Energy Syst., 2010, 4: 252
[3] Gui Y, Liang Z Y, Wang S, et al. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2023, 211: 110857
[4] Lu J T, Zhao X B, Yuan Y, et al. Corrosion behavior of alloys in supercritical CO2 brayton cycle power generation [J]. Proc. CSEE, 2016, 36: 739.
[4] 鲁金涛, 赵新宝, 袁 勇 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 [J]. 中国电机工程学报, 2016, 36: 739
[5] Cao G, Firouzdor V, Sridharan K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide [J]. Corros. Sci., 2012, 60: 246
[6] Rouillarda F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high temperature CO2 [J]. Corros. Sci., 2016, 105: 120
[7] Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49:30
[7] 肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49: 30
[8] Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
[8] 肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为[J]. 中国电机工程学报, 2023, 43: 4198
[9] Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
[10] Yang H, Liu W W, Gong B, et al. Corrosion behavior of typical structural steels in 500 oC, 600 oC and high pressure supercritical carbon dioxide conditions [J]. Corros. Sci., 2021, 192: 109801
[11] Chena H S, Kima S H, Longb C S, et al. Oxidation behavior of high-strength FeCrAl alloys in a high-temperature supercritical carbon dioxide environment [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 731
[12] Meier G H, Jung K Y, Mu N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys [J]. Oxid. Met., 2010, 74: 319
[13] Mu N, Jung K Y, Yanar N M, et al. Water vapour effects on the oxidation behaviour of Fe-Cr and Ni-Cr alloys in atmospheres relevant to oxy-fuel combustion [J]. Oxid. Met., 2012, 78: 221
[14] Gheno T, Monceau D, Young D J. Mechanism of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide [J]. Corros. Sci., 2012, 64: 222
[15] Fujii C T, Meussner R A. Carburization of Fe-Cr alloys during oxidation in dry carbon dioxide [J]. J. Electrochem. Soc., 1967, 114: 435
[16] Huang C L, Zhu M, Lu J T, et al. Effect of aluminide coating on the mechanical properties of T92 steel [J]. Therm. Power Gener., 2023, 52: 113
[16] 黄春林, 朱 明, 鲁金涛 等. 铝化物涂层对T92钢高温力学性能的影响 [J]. 热力发电, 2023, 52: 113
[17] Wu J J, Jiang M Y, Liu M, et al. Improvement of the high-temperature oxidation resistance of aluminide coating by SiO2 interlayer [J]. Surf. Technol., 2020, 49(1): 56
[17] 吴景佳, 蒋梅燕, 刘 敏 等. 利用SiO2中间层提高铝化物涂层的高温防护性能 [J]. 表面技术, 2020, 49: 56
[18] Nguyen T D, Peng X, Zhang J Q, et al. Corrosion resistance of chromised and aluminised coatings in wet CO2 gas at 650 oC [J]. Surf. Coat. Technol., 2017, 316: 226
[19] Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
[19] 严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345
[20] Yan G S, Yu W S, Shen S P. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction [J]. Corros. Sci., 2020, 173: 108760
[21] Yan G S, Yu W S, Shen S P. High-temperature nanoindentation for temperature-dependent mechanical behavior of enamel coating [J]. Surf. Coat. Technol., 2019, 374: 541
[22] Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
[23] Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanism [J]. Corros. Sci., 2014, 82: 316
[24] Chen K, Xie J J, Li W F, et al. Excellent hot-corrosion and thermal-shock resistance of metal-enamel composite coating on martensitic stainless steel enabled by interface engineering [J]. Corros. Sci., 2022, 202: 110286
[25] Yin K, Yang Y, Frank Cheng Y. Permeability of coal tar enamel coating to cathodic protection current on pipelines [J]. Constr. Build. Mater., 2018, 192: 20
[26] Liu H Y, Feng Y J, Li P, et al. Enhanced plasticity of the oxide scales by in-situ formed Cr2O3/Cr heterostructures for Cr-based coatings on Zr alloy in 1200 oC steam [J]. Corro. Sci., 2021, 184: 109361
[27] Chyrkin A, Pillai R, Galiullin T, et al. External α-Al2O3 scale on Ni-base alloy 602 CA—Part I: Formation and long-term stability [J]. Corros. Sci., 2017, 124: 138
[28] Wen S H, Zhou C G, Sha J B. Improvement of oxidation resistance of a Mo-62Si-5B (at.%) alloy at 1250 oC and 1350 oC via an in situ pre-formed SiO2 fabricated by spark plasma sintering [J]. Corros. Sci., 2017, 127: 175
[29] Chen D H, Xu X F, Zhao Y, et al. Superior mechanical properties of M35 high-speed steel obtained by controlling carbide precipitation and distribution via electropulsing treatment [J]. Mater. Sci. Eng., 2023, A888: 145691
[30] Rouillard F, Moine G, Martinelli L, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature I: Mechanism of void-induced duplex oxide formation [J]. Oxid. Met., 2012, 77: 27
[31] Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
[32] Young D J, Zhang J Q. Alloy corrosion by hot CO2 gases [J]. JOM, 2018, 70: 1493
[33] Ujihara T, Fujiwara K, Sazaki G, et al. Evaluation of the diffusion coefficients in liquid GaGe binary alloys using a novel method based on Fick's first law [J]. J. Non-Cryst. Solids, 2002, 312: 196
[34] Xu L Q. Research on phase transformation behaviors and heat-treatment processes of T92 ferritic steel [D]. Tianjin: Tianjin University, 2013
[34] 许林青. T92铁素体钢相变行为及热处理工艺的研究 [D]. 天津: 天津大学, 2013
[35] Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
[1] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[2] 丰敏, 陈明辉, 余中狄, 吕振波, 朱圣龙, 王福会. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J]. 金属学报, 2017, 53(12): 1636-1644.
[3] 魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
[4] 孙冲, 孙建波, 王勇, 王世杰, 刘建新. 超临界CO2/油/水系统中油气管材钢的腐蚀机制*[J]. 金属学报, 2014, 50(7): 811-820.
[5] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[6] 孙建波 柳伟 常炜 张忠铧 李忠涛 于湉 路民旭. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制[J]. 金属学报, 2009, 45(1): 84-90.
[7] 熊玉明; 朱圣龙; 王福会 . 超细搪瓷涂层对Ti60合金氧化及力学性能的影响[J]. 金属学报, 2004, 40(7): 768-772 .