|
|
机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化 |
雷云龙1, 杨康1( ), 辛越1, 姜自滔1, 童宝宏2, 张世宏1( ) |
1 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243000 2 安徽工业大学 机械工程学院 马鞍山 243032 |
|
Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy |
LEI Yunlong1, YANG Kang1( ), XIN Yue1, JIANG Zitao1, TONG Baohong2, ZHANG Shihong1( ) |
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243000, China 2 School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243032, China |
引用本文:
雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
Yunlong LEI,
Kang YANG,
Yue XIN,
Zitao JIANG,
Baohong TONG,
Shihong ZHANG.
Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. Acta Metall Sin, 2025, 61(5): 731-743.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Yu T, Wang H Q, Han K, et al. Mo20Nb20Co20Cr20(Ti8Al8Si4) refractory high-entropy alloy coatings fabricated by electron beam cladding: Microstructure and wear resistance [J]. Intermetallics, 2022, 149: 107669
|
4 |
Mishra S S, Yadav T P, Srivastava O N, et al. Formation and stability of C14 type Laves phase in multi component high-entropy alloys [J]. J. Alloys Compd., 2020, 832: 153764
|
5 |
Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 oC [J]. Corros. Sci., 2021, 187: 109479
|
6 |
Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
6 |
张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
7 |
Kondapalli V A S, Suresh K, Ramakrishna M, et al. Effect of Cu content on the microstructure and mechanical properties of FeNi-MnCu x Al0.1Ti0.1 (x = 0.5, 1.0 and 1.5) high entropy alloy system [J]. J. Alloys Compd., 2023, 940: 168819
|
8 |
Yu K D, Zhao W, Li Z, et al. Effects of pulse frequency on the microstructure and properties of AlCoCrFeNiMo(TiC) high-entropy alloy coatings prepared by laser cladding [J]. Surf. Coat. Technol., 2023, 458: 129352
|
9 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
10 |
Yu K D, Zhao W, Li Z, et al. High-temperature oxidation behavior and corrosion resistance of in-situ TiC and Mo reinforced AlCoCrFeNi-based high entropy alloy coatings by laser cladding [J]. Ceram. Int., 2023, 49: 10151
|
11 |
Yang K, Xin Y, Jiang Z T, et al. Microstructure and properties of mechanical-alloyed CoNiCrAlY composite powders and coatings reinforced by nano-ceramics [J]. Acta Metall. Sin., 2025, 61: 619
|
11 |
杨 康, 辛 越, 姜自滔 等. 纳米ZrB2增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织性能研究 [J]. 金属学报, 2025, 61: 619
|
12 |
Smeltzer J A, Burton M T, Hornbuckle B C, et al. Optimization of cryogenic mechanical alloying parameters to synthesize ultrahard refractory high entropy materials [J]. Mater. Des., 2021, 210: 110070
|
13 |
Zhang K B, Fu Z Y, Zhang J Y, et al. Nanocrystalline CoCrFeNi-CuAl high-entropy solid solution synthesized by mechanical alloying [J]. J. Alloys Compd., 2009, 485: L31
|
14 |
Wang G F, Liu Q, Yang J L, et al. Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 104988
|
15 |
An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
15 |
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
16 |
Gao F, Sun Y, Hu L X, et al. Microstructural evolution and thermal stability in a nanocrystalline lightweight TiAlV0.5CrMo refractory high-entropy alloy synthesized by mechanical alloying [J]. Mater. Lett., 2022, 329: 133179
|
17 |
Pradhan P, Shadangi Y, Shivam V, et al. Powder metallurgical processing of CrMnFeCoMo high entropy alloy: Phase evolution, microstructure, thermal stability and mechanical properties [J]. J. Alloys Compd., 2023, 935: 168002
|
18 |
Nagarjuna C, Dewangan S K, Lee H, et al. Evolution of phase stability and structural properties in CrFeNiTiV high-entropy alloy under high-temperature heat treatment conditions [J]. Mater. Sci. Eng., 2023, A886: 145680
|
19 |
Chen Y L, Hu Y H, Hsieh C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system [J]. J. Alloys Compd., 2009, 481: 768
|
20 |
Gu J, Gu S S, Xue L H, et al. Microstructure evolution of Al-Fe alloys prepared by mechanical alloying and spark plasma sintering [J]. Acta Metall. Sin., 2013, 49: 435
|
20 |
顾 健, 古飒飒, 薛丽红 等. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变 [J]. 金属学报, 2013, 49: 435
|
21 |
Li J, Hong H H, Sun L, et al. Argon ion sputtering bridging plasma nitriding and GLC film deposition: Effects on the mechanical and tribological properties [J]. Surf. Coat. Technol., 2024, 479: 130559
|
22 |
Soni V K, Sanyal S, Sinha S K. Phase evolution and mechanical properties of novel FeCoNiCuMo x high entropy alloys [J]. Vacuum, 2020, 174: 109173
|
23 |
Cai Z B, Wang Z, Yang W J, et al. Microstructure and corrosion behavior of AlCrTiV-X (X=Cu, Mo, CuMo) high-entropy alloy films in 3.5 wt.% NaCl solution [J]. Surf. Interfaces, 2021, 27: 101558
|
24 |
Cheng H, Liu X Q, Tang Q H, et al. Microstructure and mechanical properties of FeCoCrNiMnAl x high-entropy alloys prepared by mechanical alloying and hot-pressed sintering [J]. J. Alloys Compd., 2019, 775: 742
|
25 |
Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
|
26 |
Zhang B F, Zhao R F, Ren B, et al. Mechanical alloying behavior and thermal stability of CoCrCuFeMnNi x high-entropy alloy powders prepared via MA [J]. Materials, 2023, 16: 3179
|
27 |
Zhao R F, Ren B, Zhang G P, et al. Effect of Co content on the phase transition and magnetic properties of Co x CrCuFeMnNi high-entropy alloy powders [J]. J. Magn. Magn. Mater., 2018, 468: 14
|
28 |
Chen Z P, Ren X N, Wang P, et al. Design and experimental investigation of the high-entropy alloys AlCrFeNiCu and AlCrFeNbMo [J]. J. Mater. Res. Technol., 2023, 26: 3118
|
29 |
Zhan L Q, Hou J B, Wang G F, et al. Study on mechanical alloying behavior and thermal stability of HfMoNbTaTi refractory high-entropy alloy [J]. Mater. Charact., 2023, 203: 113122
|
30 |
Song Y H, Wang M T, Zong Y P, et al. Grain refinement by second phase particles under applied stress in ZK60 Mg alloy with Y through phase field simulation [J]. Materials, 2018, 11: 1903
|
31 |
Fu Z Q, Chen W P, Wen H M, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy [J]. Acta Mater., 2016, 107: 59
|
32 |
Ganji R S, Karthik P S, Rao K B S, et al. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods [J]. Acta Mater., 2017, 125: 58
|
33 |
Lv J P, Wu Y P, Hong S, et al. Effects of WC addition on the erosion behavior of high-velocity oxygen fuel sprayed AlCoCrFeNi high-entropy alloy coatings [J]. Ceram. Int., 2022, 48: 18502
|
34 |
Zhang S H, Hu K, Liu X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metall. Sin., 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
|
34 |
张世宏, 胡 凯, 刘 侠 等. 发电锅炉材料与防护涂层的磨蚀机制与研究展望 [J]. 金属学报, 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|