Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 731-743    DOI: 10.11900/0412.1961.2023.00481
  研究论文 本期目录 | 过刊浏览 |
机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化
雷云龙1, 杨康1(), 辛越1, 姜自滔1, 童宝宏2, 张世宏1()
1 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243000
2 安徽工业大学 机械工程学院 马鞍山 243032
Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy
LEI Yunlong1, YANG Kang1(), XIN Yue1, JIANG Zitao1, TONG Baohong2, ZHANG Shihong1()
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243000, China
2 School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243032, China
引用本文:

雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
Yunlong LEI, Kang YANG, Yue XIN, Zitao JIANG, Baohong TONG, Shihong ZHANG. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. Acta Metall Sin, 2025, 61(5): 731-743.

全文: PDF(6076 KB)   HTML
摘要: 

为制备适用于热喷涂的高熵合金粉末,本工作以金属单质粉末为原料,通过机械合金化(MA)法制备出AlCrCu0.5Mo0.5Ni高熵合金粉末。研究了球磨时间对MA粉末相结构、晶粒尺寸和微观组织演变的影响。利用XRD对MA粉末进行了物相分析,并计算了MA粉末的晶粒尺寸、晶格应变和晶格常数。利用SEM和TEM对MA粉末进行了组织形貌和微观结构分析。此外,利用真空等温退火对MA粉末进行相调控。结果表明,AlCrCu0.5Mo0.5Ni高熵合金粉末中形成2个bcc固溶体相(bcc1、bcc2)和fcc固溶体相。随着球磨时间的延长,MA粉末发生塑性变形,导致MA粉末的晶粒尺寸减小,晶格应变增大。粉末颗粒的破碎和元素富集区的细化加速了元素的扩散和合金化。球磨至40 h时,粉末颗粒内部元素分布较均匀,bcc1、bcc2和fcc相的质量分数分别为41%、37%和22%,平均粒径(D50)为24 μm,适宜用作热喷涂粉末。球磨40 h的MA粉末经800 ℃退火后,bcc2固溶体结构分解,退火温度达到1000 ℃时,bcc2固溶体完全分解,bcc1和fcc相质量分数分别为68%和21%,并生成11%的CrMo相。随着退火温度升高,MA粉末释放出大量的应变能,导致晶粒尺寸增加,晶格应变减小。当退火温度为800 ℃时,MA粉末硬度和Young's模量最大,分别为(6.54 ± 0.58)和(65.62 ± 3.07) GPa。

关键词 高熵合金粉末机械合金化热处理组织演变力学性能    
Abstract

Boiler steel is prone to thermal corrosion and abrasion in high-temperature environments, making thermal spray protective coatings a vital solution for enhancing the corrosion and abrasion resistance of boilers. This study focuses on the development of a novel AlCrCu0.5Mo0.5Ni high-entropy alloy powder synthesized through mechanical alloying (MA) using monolithic metal powders as starting materials. The effects of milling time on the phase structure, grain size, and microstructure evolution of the MA powder were investigated. Phase characterization was performed using XRD; grain size, lattice strain, and lattice constant were measured; morphological and microstructural analyses were performed using SEM and TEM. Phase regulation through vacuum isothermal annealing techniques was also explored. The findings indicated the formation of two bcc (bcc1, bcc2) and one fcc solid solution phases within the high-entropy alloy powder. With increased milling time, the MA powder experienced plastic deformation, which led to a reduction in grain size and an augmentation of lattice strain. Powder particle fragmentation and refinement of the element-enriched zones facilitated enhanced diffusion and alloying of the elements. At 40 h of milling, the powder particles exhibited a more homogeneous elemental distribution, with phase contents of 41% bcc1, 37% bcc2, and 22% fcc, and an average particle size of 24 μm, making them suitable for thermal spray applications. Annealing at 800 oC led to the decomposition of the bcc2 solid solution structure after 40 h of ball milling. Upon increasing the annealing temperature to 1000 oC, complete decomposition of the bcc2 solid solution was observed, resulting in 68% bcc1 and 21% fcc phases, with the emergence of 11% CrMo phase. As the annealing temperature was increased, the MA powder released significant strain energy, increasing grain size and a reduction in lattice strain. The maximum hardness and elasticity modulus were achieved after annealing at 800 oC, recorded at (6.54 ± 0.58) and (65.62 ± 3.07) GPa, respectively.

Key wordshigh-entropy alloy powder    mechanical alloying    heat treatment    microstructure evolution    mechanical property
收稿日期: 2023-12-13     
ZTFLH:  TG135  
基金资助:国家自然科学基金项目(U22A20110)
通讯作者: 杨 康,kangy029@163.com,主要从事热/冷喷涂科学与技术研究;
张世宏,shzhang@ahut.edu.cn,主要从事金属表面科学与技术研究
Corresponding author: YANG Kang, Tel: 19155517628, E-mail: kangy029@163.com;
ZHANG Shihong, professor, Tel: (0555)2315291, E-mail: shzhang@ahut.edu.cn
作者简介: 雷云龙,男,1994年生,博士生
ElementMolar mass / (g·mol-1)Average atomic radius / nmVECMelting point / oCStructure
Al26.980.14323660fcc
Cr52.000.124961850bcc
Cu63.550.1280111083fcc
Mo95.940.136362625bcc
Ni58.690.1240101455fcc
表1  机械合金化(MA)粉末中各元素的特征参数
图1  不同球磨时间下机械合金化(MA)粉末的XRD谱
图2  组成元素之间的混合焓
图3  晶粒尺寸、晶格应变和晶格常数随球磨时间的变化
图4  不同球磨时间下MA粉末中的相含量
图5  不同球磨时间下MA粉末的表面形貌
图6  不同球磨时间下MA粉末的截面形貌及EDS元素分布图
图7  不同球磨时间后MA粉末的粒度分布和平均粒径(D50)的变化趋势
图8  MA 40 h粉末的TG-DSC曲线、不同退火温度下的XRD谱、晶粒尺寸和晶格应变及相含量
图9  不同退火温度下MA 40 h粉末的表面形貌
图10  不同退火温度下MA 40 h粉末的截面形貌及EDS元素分布图
图11  1200 ℃退火后MA 40 h粉末的TEM明场像、选区电子衍射(SAED)花样和EDS元素分布图
图12  1200 ℃退火后MA粉末中两相界面的典型HRTEM像及快速Fourier变换(FFT)、反FFT (IFFT)图
图13  球磨态和退火态MA粉末的力学性能
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Yu T, Wang H Q, Han K, et al. Mo20Nb20Co20Cr20(Ti8Al8Si4) refractory high-entropy alloy coatings fabricated by electron beam cladding: Microstructure and wear resistance [J]. Intermetallics, 2022, 149: 107669
4 Mishra S S, Yadav T P, Srivastava O N, et al. Formation and stability of C14 type Laves phase in multi component high-entropy alloys [J]. J. Alloys Compd., 2020, 832: 153764
5 Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 oC [J]. Corros. Sci., 2021, 187: 109479
6 Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
6 张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
7 Kondapalli V A S, Suresh K, Ramakrishna M, et al. Effect of Cu content on the microstructure and mechanical properties of FeNi-MnCu x Al0.1Ti0.1 (x = 0.5, 1.0 and 1.5) high entropy alloy system [J]. J. Alloys Compd., 2023, 940: 168819
8 Yu K D, Zhao W, Li Z, et al. Effects of pulse frequency on the microstructure and properties of AlCoCrFeNiMo(TiC) high-entropy alloy coatings prepared by laser cladding [J]. Surf. Coat. Technol., 2023, 458: 129352
9 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
10 Yu K D, Zhao W, Li Z, et al. High-temperature oxidation behavior and corrosion resistance of in-situ TiC and Mo reinforced AlCoCrFeNi-based high entropy alloy coatings by laser cladding [J]. Ceram. Int., 2023, 49: 10151
11 Yang K, Xin Y, Jiang Z T, et al. Microstructure and properties of mechanical-alloyed CoNiCrAlY composite powders and coatings reinforced by nano-ceramics [J]. Acta Metall. Sin., 2025, 61: 619
11 杨 康, 辛 越, 姜自滔 等. 纳米ZrB2增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织性能研究 [J]. 金属学报, 2025, 61: 619
12 Smeltzer J A, Burton M T, Hornbuckle B C, et al. Optimization of cryogenic mechanical alloying parameters to synthesize ultrahard refractory high entropy materials [J]. Mater. Des., 2021, 210: 110070
13 Zhang K B, Fu Z Y, Zhang J Y, et al. Nanocrystalline CoCrFeNi-CuAl high-entropy solid solution synthesized by mechanical alloying [J]. J. Alloys Compd., 2009, 485: L31
14 Wang G F, Liu Q, Yang J L, et al. Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 104988
15 An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
15 安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
16 Gao F, Sun Y, Hu L X, et al. Microstructural evolution and thermal stability in a nanocrystalline lightweight TiAlV0.5CrMo refractory high-entropy alloy synthesized by mechanical alloying [J]. Mater. Lett., 2022, 329: 133179
17 Pradhan P, Shadangi Y, Shivam V, et al. Powder metallurgical processing of CrMnFeCoMo high entropy alloy: Phase evolution, microstructure, thermal stability and mechanical properties [J]. J. Alloys Compd., 2023, 935: 168002
18 Nagarjuna C, Dewangan S K, Lee H, et al. Evolution of phase stability and structural properties in CrFeNiTiV high-entropy alloy under high-temperature heat treatment conditions [J]. Mater. Sci. Eng., 2023, A886: 145680
19 Chen Y L, Hu Y H, Hsieh C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system [J]. J. Alloys Compd., 2009, 481: 768
20 Gu J, Gu S S, Xue L H, et al. Microstructure evolution of Al-Fe alloys prepared by mechanical alloying and spark plasma sintering [J]. Acta Metall. Sin., 2013, 49: 435
20 顾 健, 古飒飒, 薛丽红 等. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变 [J]. 金属学报, 2013, 49: 435
21 Li J, Hong H H, Sun L, et al. Argon ion sputtering bridging plasma nitriding and GLC film deposition: Effects on the mechanical and tribological properties [J]. Surf. Coat. Technol., 2024, 479: 130559
22 Soni V K, Sanyal S, Sinha S K. Phase evolution and mechanical properties of novel FeCoNiCuMo x high entropy alloys [J]. Vacuum, 2020, 174: 109173
23 Cai Z B, Wang Z, Yang W J, et al. Microstructure and corrosion behavior of AlCrTiV-X (X=Cu, Mo, CuMo) high-entropy alloy films in 3.5 wt.% NaCl solution [J]. Surf. Interfaces, 2021, 27: 101558
24 Cheng H, Liu X Q, Tang Q H, et al. Microstructure and mechanical properties of FeCoCrNiMnAl x high-entropy alloys prepared by mechanical alloying and hot-pressed sintering [J]. J. Alloys Compd., 2019, 775: 742
25 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
26 Zhang B F, Zhao R F, Ren B, et al. Mechanical alloying behavior and thermal stability of CoCrCuFeMnNi x high-entropy alloy powders prepared via MA [J]. Materials, 2023, 16: 3179
27 Zhao R F, Ren B, Zhang G P, et al. Effect of Co content on the phase transition and magnetic properties of Co x CrCuFeMnNi high-entropy alloy powders [J]. J. Magn. Magn. Mater., 2018, 468: 14
28 Chen Z P, Ren X N, Wang P, et al. Design and experimental investigation of the high-entropy alloys AlCrFeNiCu and AlCrFeNbMo [J]. J. Mater. Res. Technol., 2023, 26: 3118
29 Zhan L Q, Hou J B, Wang G F, et al. Study on mechanical alloying behavior and thermal stability of HfMoNbTaTi refractory high-entropy alloy [J]. Mater. Charact., 2023, 203: 113122
30 Song Y H, Wang M T, Zong Y P, et al. Grain refinement by second phase particles under applied stress in ZK60 Mg alloy with Y through phase field simulation [J]. Materials, 2018, 11: 1903
31 Fu Z Q, Chen W P, Wen H M, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy [J]. Acta Mater., 2016, 107: 59
32 Ganji R S, Karthik P S, Rao K B S, et al. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods [J]. Acta Mater., 2017, 125: 58
33 Lv J P, Wu Y P, Hong S, et al. Effects of WC addition on the erosion behavior of high-velocity oxygen fuel sprayed AlCoCrFeNi high-entropy alloy coatings [J]. Ceram. Int., 2022, 48: 18502
34 Zhang S H, Hu K, Liu X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metall. Sin., 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
34 张世宏, 胡 凯, 刘 侠 等. 发电锅炉材料与防护涂层的磨蚀机制与研究展望 [J]. 金属学报, 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
[1] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[2] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[3] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[4] 杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏. 纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能[J]. 金属学报, 2025, 61(4): 619-631.
[5] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[6] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[7] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[8] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[9] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[10] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[11] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[12] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[13] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[14] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[15] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.