Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1364-1374    DOI: 10.11900/0412.1961.2023.00291
  研究论文 本期目录 | 过刊浏览 |
γ' 相含量粉末及变形高温合金组织和力学性能的异同性
王洪瑛1, 姚志浩1(), 李大禹1, 郭婧2, 姚凯俊1, 董建新1
1 北京科技大学 材料科学与工程学院 北京 100083
2 中国航发湖南动力机械研究所 株洲 412002
Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys
WANG Hongying1, YAO Zhihao1(), LI Dayu1, GUO Jing2, YAO Kaijun1, DONG Jianxin1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China
引用本文:

王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. 高 γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
Hongying WANG, Zhihao YAO, Dayu LI, Jing GUO, Kaijun YAO, Jianxin DONG. Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. Acta Metall Sin, 2025, 61(9): 1364-1374.

全文: PDF(4388 KB)   HTML
摘要: 

探究粉末冶金和传统铸锻工艺所制备的高温合金组织性能的异同性,可为难变形涡轮盘的实际生产和服役安全提供理论参考。本工作利用SEM、TEM、EBSD表征以及Vickers硬度和高温拉伸实验等方法研究了粉末合金(FGH4720Li合金)和变形合金(GH4720Li合金)微观组织特征和力学性能的异同点,并详细分析了异同点之间的关联性。结果表明,FGH4720Li合金和GH4720Li合金的位错和孪晶亚结构形态分布、晶粒取向及孪晶界分布均相似。不同之处在于:GH4720Li合金中的γI'相尺寸(1.92~2.41 μm)大于FGH4720Li合金中的γI'相尺寸(1.41~1.51 μm),FGH4720Li合金中的γII'相尺寸(66.24~73.15 nm)略高于GH4720Li合金中γII'相的尺寸(64.74~72.29 nm),且FGH4720Li合金中存在花瓣状γII'相。GH4720Li合金内尺寸在12~24 µm之间的晶粒占比略高于FGH4720Li合金,且GH4720Li合金组织中含有少量粗晶(32~36 µm)。总体而言,GH4720Li合金晶粒度级别(10~10.5)略低于FGH4720Li合金(11~12)。2种合金中的大角度晶界占比均超过83%,但FGH4720Li合金中的小角度晶界数量略高于GH4720Li合金,晶内取向差更明显。平均晶粒尺寸更小的FGH4720Li合金相对GH4720Li合金具备更高的硬度、屈服强度和抗拉强度。

关键词 粉末及变形高温合金微观组织力学性能γ'晶粒尺寸    
Abstract

The turbine disk is a crucial heat-resistant component of aeronautical engines. An investigation into the similarities and differences in the microstructure and mechanical properties of superalloys fabricated using powder metallurgy and conventional casting and wrought methods could provide a theoretical framework for ensuring the production and operational reliability of turbine disks that are difficult to deform. GH4720Li (Udimet720Li) alloy is a commonly used nickel-based superalloy reinforced through precipitation. The volume fraction of γ' precipitation in GH4720Li alloy is 45%. It is mainly used to make compressor and turbine disks for use at 650-750 oC, as well as turbine disks for use at 900 oC in a short time. The mechanical properties of the GH4720Li alloy are closely associated with its microstructure. The mechanical properties of the alloy, including hardness, yield strength, and tensile strength, are influenced by factors such as grain size and orientation, distribution of the γ′ phase, presence of twins, and arrangement of grain boundaries. To investigate the similarities and differences of the microstructure and mechanical properties between powder alloy (FGH4720Li alloy) and wrought alloy (GH4720Li alloy), which were prepared by powder metallurgy and traditional cast and wrought processes, the microstructure characteristics of FGH4720Li alloy and GH4720Li alloy were observed and analyzed by SEM, TEM, and EBSD (FGH4720Li alloy). The mechanical properties of both alloys were studied via Vickers hardness and high-temperature tensile tests. Furthermore, the relationship between the microstructure and mechanical properties of both alloys was thoroughly discussed. Results show that the distribution characteristics of dislocation, twin substructure morphology, grain orientation concentration, and twin boundary in both alloys are similar. Wide twins (0.5-1 μm) and some narrow twins (< 100 nm) were observed in both two alloys, and the type of twin boundary is primarily Σ3. No obvious preferred orientation was noticed in both alloys. The difference is that the size of γI' phase in the GH4720Li alloy (1.92-2.41 μm) is larger than that in the FGH4720Li alloy (1.41-1.51 μm), whereas the size of γII'phase in the powder FGH4720Li alloy (66.24-73.15 nm) is higher than that in the GH4720Li alloy (64.74-72.29 nm); additionally, a petal-like γII' was observed in the FGH4720Li alloy. The proportion of grain size between 12 and 24 μm in the GH4720Li alloy is higher than that in the FGH4720Li alloy, and the microstructure of the GH4720Li alloy contains some coarse grains (32-36 μm). The percentage of high angle grain boundaries in both alloys is higher than 83%. However, FGH4720Li alloy has a higher fraction of low angle grain boundaries than GH4720Li alloy. Additionally, FGH4720Li alloy exhibits a more pronounced variation in intracrystalline orientation. Furthermore, FGH4720Li alloy with small average grain size exhibits higher hardness, yield strength, and ultimate tensile strength than GH4720Li alloy.

Key wordspowder and wrought superalloys    microstructure    mechanical property    γ' phase    grain size
收稿日期: 2023-07-07     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(52271087);国家科技重大专项项目(J2017-VI-0017-089)
通讯作者: 姚志浩,zhihaoyao@ustb.edu.cn,主要从事先进高温结构材料研究
Corresponding author: YAO Zhihao, professor, Tel: (010)62332884, E-mail: zhihaoyao@ustb.edu.cn
作者简介: 王洪瑛,女,1996年生,博士生
图1  FGH4720Li和GH4720Li合金盘坯及取样示意图
图2  GH4720Li合金平衡相图
图3  FGH4720Li和GH4720Li合金中γI'相的SEM像和尺寸分布图
图4  FGH4720Li和GH4720Li合金中γII'相的SEM像和尺寸分布图
图5  FGH4720Li和GH4720Li合金中位错分布的TEM像
图6  FGH4720Li和GH4720Li合金中孪晶分布的TEM像
图7  FGH4720Li和GH4720Li合金的极图
图8  FGH4720Li和GH4720Li合金中的晶粒取向分布图及晶粒尺寸分布图
AlloyGrain boundary misorientationTwin boundary
2°-10°10°-180°Σ3Σ9Σ27aΣ27b
FGH-116.283.827.50.90.20.4
GH-19.091.028.31.50.10.6
FGH-215.684.425.20.80.20.2
GH-29.990.124.31.20.20.3
FGH-316.883.224.60.80.10.3
GH-38.092.022.90.80.10.4
表1  FGH4720Li和GH4720Li合金中大、小角度晶界和孪晶界的数量分数 (%)

Alloy

500 oC650 oC720 oC

Vickers

hardness (RT)

HV

YS

MPa

UTS

MPa

YS

MPa

UTS

MPa

YS

MPa

UTS

MPa

FGH4720Li109815301068136310581153580
GH4720Li108315131048135010201133494
表2  FGH4720Li和GH4720Li合金高温拉伸性能以及室温Vickers硬度
图9  FGH4720Li和GH4720Li合金微观组织异同的示意图
[1] Fan H Y, Jiang H, Dong J X, et al. An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization [J]. J. Mater. Process. Technol., 2019, 269: 52
[2] Zhao C L, Wang Q, Tang Y, et al. Microstructure and property stability of powder metallurgy nickel-based U720Li superalloy during long-term aging [J]. Rare Met. Mater. Eng., 2022, 51: 2356
[2] 赵春玲, 王 强, 汤 悦 等. 粉末镍基U720Li高温合金长期时效下的组织与性能稳定性[J]. 稀有金属材料与工程, 2022, 51: 2356
[3] Zhang H K, Li Y, Ma H C, et al. A novel short-process manufacturing method of γ′-strengthened superalloy: Modulation of nano-scaled γ′ precipitates during hot deformation [J]. Mater. Sci. Eng., 2022, A846: 143257
[4] Wan Z P. Hot deformation behavior and microstructure & properties control of Ni-based alloy GH4720LI [D]. Harbin: Harbin Institute of Technology, 2019
[4] 万志鹏. GH4720LI镍基合金高温变形行为及组织性能控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
[5] Qu J L, Yi C S, Chen J W, et al. Research progress of precipitated phases in GH4720Li superalloy [J]. J. Mater. Eng., 2020, 48(8): 73
[5] 曲敬龙, 易出山, 陈竞炜 等. GH4720Li合金中析出相的研究进展 [J]. 材料工程, 2020, 48(8): 73
doi: 10.11868/j.issn.1001-4381.2020.000182
[6] Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
[7] Jiang R, Zhang W T, Zhang L C, et al. Strain localization and crack initiation behavior of a PM Ni-based superalloy: SEM-DIC characterization and crystal plasticity simulation [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 1635
[8] Liu J, Ye F, Wang X Q, et al. Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li [J]. Powder Metall. Technol., 2021, 39: 499, 525
[8] 刘 健, 叶 飞, 王旭青 等. 粉末高温合金Udimet720Li γ′强化相析出行为 [J]. 粉末冶金技术, 2021, 39: 499, 525
[9] Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
[9] 刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
[10] Tian G F, Jia C C, Wen Y, et al. Effect of solution cooling rate on the γ′ precipitation behaviors of a Ni-based P/M superalloy [J]. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2008, 15: 729
[11] Huang Z L, Xie X F, Gu Y, et al. Tensile properties of Ni-based GH4720Li superalloys with different microstructures at 650 oC [J]. Chin. J. Rare Met., 2021, 45: 1269
[11] 黄子琳, 谢兴飞, 谷 雨 等. GH4720Li镍基合金显微组织对650 ℃拉伸性能影响 [J]. 稀有金属, 2021, 45: 1269
[12] Hu D Y, Ma Q H, Shang L H, et al. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 oC and probabilistic creep-fatigue modeling [J]. Mater. Sci. Eng., 2016, A670: 17
[13] Yu Q Y, Yao Z H, Dong J X. Deformation and recrystallization behavior of a coarse-grain, nickel-base superalloy Udimet720Li ingot material [J]. Mater. Charact., 2015, 107: 398
[14] Chen J Y, Dong J X, Zhang M C, et al. Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ′ phases [J]. Mater. Sci. Eng., 2016, A673: 122
[15] Zhang H K, Ma H C, Chang T X, et al. Deformation mechanisms of primary γ′ precipitates in nickel-based superalloy [J]. Scr. Mater., 2023, 224: 115109
[16] Qu J L, Bi Z N, Du J H, et al. Hot deformation behavior of nickel-based superalloy GH4720Li [J]. J. Iron Steel Res. Int., 2011, 18: 59
[17] Shen J Y, Hu L X, Sun Y, et al. Hot deformation behaviors and three-dimensional processing map of a nickel-based superalloy with initial dendrite microstructure [J]. J. Alloys Compd., 2020, 822: 153735
[18] Kan Z, Du L X, Hu J, et al. Influence of microstructure on mechanical property of GH4720 Li alloy [J]. J. Northeast. Univ. (Nat. Sci.), 2017, 38: 46
[18] 阚 志, 杜林秀, 胡 军 等. 微观组织对GH4720 Li合金力学性能的影响 [J]. 东北大学学报(自然科学版), 2017, 38: 46
[19] Liu C. Evolution and interaction of microstructures of deformed superalloy during preparation process and thermo-mechnical coupling action [D]. Beijing: University of Science and Technology Beijing, 2022
[19] 刘 超. 变形高温合金制备过程和热力耦合作用下组织演变及互影响 [D]. 北京: 北京科技大学, 2022
[20] Cayron C. Multiple twinning in cubic crystals: Geometric/algebraic study and its application for the identification of the Σ3 n grain boundaries [J]. Acta Crystallogr.: Found. Crystallogr., 2007, 63A: 11
[21] Ning Y Q, Wang T, Fu M W, et al. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression [J]. Mater. Sci. Eng., 2015, A642: 187
[22] Xie X F, Qu J L, Du J H. Effect of mixed grain structure on high temperature stress rupture property of Ni-based GH4720Li superalloy [J]. Mater. Rep., 2020, 34(suppl.1): 375
[22] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响 [J]. 材料导报, 2020, 34(增刊1): 375
[23] Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
[24] Bhowal P R, Wright E F, Raymond E L. Effects of cooling rate and γ′ morphology on creep and stress-rupture properties of a powder metallurgy superalloy [J]. Metall. Trans., 1990, 21A: 1709
[25] Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
[26] Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
[27] Zhao G D. Effect of B and C on solidification segregation and hot ductility of U720Li alloy [D]. Hefei: University of Science and Technology of China, 2017
[27] 赵广迪. B和C对U720Li合金凝固偏析和热加工塑性的影响 [D]. 合肥: 中国科学技术大学, 2017
[28] Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
[29] Sinharoy S, Virro-Nic P, Milligan W W. Deformation and strength behavior of two nickel-base turbine disk alloys at 650 oC [J]. Metall. Mater. Trans., 2001, 32A: 2021
[1] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[2] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[3] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[4] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[5] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[6] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[7] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[8] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[9] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[10] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[11] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[12] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[13] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[14] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[15] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.