|
|
高 γ' 相含量粉末及变形高温合金组织和力学性能的异同性 |
王洪瑛1, 姚志浩1( ), 李大禹1, 郭婧2, 姚凯俊1, 董建新1 |
1 北京科技大学 材料科学与工程学院 北京 100083 2 中国航发湖南动力机械研究所 株洲 412002 |
|
Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys |
WANG Hongying1, YAO Zhihao1( ), LI Dayu1, GUO Jing2, YAO Kaijun1, DONG Jianxin1 |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China |
引用本文:
王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. 高 γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
Hongying WANG,
Zhihao YAO,
Dayu LI,
Jing GUO,
Kaijun YAO,
Jianxin DONG.
Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. Acta Metall Sin, 2025, 61(9): 1364-1374.
[1] |
Fan H Y, Jiang H, Dong J X, et al. An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization [J]. J. Mater. Process. Technol., 2019, 269: 52
|
[2] |
Zhao C L, Wang Q, Tang Y, et al. Microstructure and property stability of powder metallurgy nickel-based U720Li superalloy during long-term aging [J]. Rare Met. Mater. Eng., 2022, 51: 2356
|
[2] |
赵春玲, 王 强, 汤 悦 等. 粉末镍基U720Li高温合金长期时效下的组织与性能稳定性[J]. 稀有金属材料与工程, 2022, 51: 2356
|
[3] |
Zhang H K, Li Y, Ma H C, et al. A novel short-process manufacturing method of γ′-strengthened superalloy: Modulation of nano-scaled γ′ precipitates during hot deformation [J]. Mater. Sci. Eng., 2022, A846: 143257
|
[4] |
Wan Z P. Hot deformation behavior and microstructure & properties control of Ni-based alloy GH4720LI [D]. Harbin: Harbin Institute of Technology, 2019
|
[4] |
万志鹏. GH4720LI镍基合金高温变形行为及组织性能控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
[5] |
Qu J L, Yi C S, Chen J W, et al. Research progress of precipitated phases in GH4720Li superalloy [J]. J. Mater. Eng., 2020, 48(8): 73
|
[5] |
曲敬龙, 易出山, 陈竞炜 等. GH4720Li合金中析出相的研究进展 [J]. 材料工程, 2020, 48(8): 73
doi: 10.11868/j.issn.1001-4381.2020.000182
|
[6] |
Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
|
[7] |
Jiang R, Zhang W T, Zhang L C, et al. Strain localization and crack initiation behavior of a PM Ni-based superalloy: SEM-DIC characterization and crystal plasticity simulation [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 1635
|
[8] |
Liu J, Ye F, Wang X Q, et al. Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li [J]. Powder Metall. Technol., 2021, 39: 499, 525
|
[8] |
刘 健, 叶 飞, 王旭青 等. 粉末高温合金Udimet720Li γ′强化相析出行为 [J]. 粉末冶金技术, 2021, 39: 499, 525
|
[9] |
Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
|
[9] |
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
|
[10] |
Tian G F, Jia C C, Wen Y, et al. Effect of solution cooling rate on the γ′ precipitation behaviors of a Ni-based P/M superalloy [J]. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2008, 15: 729
|
[11] |
Huang Z L, Xie X F, Gu Y, et al. Tensile properties of Ni-based GH4720Li superalloys with different microstructures at 650 oC [J]. Chin. J. Rare Met., 2021, 45: 1269
|
[11] |
黄子琳, 谢兴飞, 谷 雨 等. GH4720Li镍基合金显微组织对650 ℃拉伸性能影响 [J]. 稀有金属, 2021, 45: 1269
|
[12] |
Hu D Y, Ma Q H, Shang L H, et al. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 oC and probabilistic creep-fatigue modeling [J]. Mater. Sci. Eng., 2016, A670: 17
|
[13] |
Yu Q Y, Yao Z H, Dong J X. Deformation and recrystallization behavior of a coarse-grain, nickel-base superalloy Udimet720Li ingot material [J]. Mater. Charact., 2015, 107: 398
|
[14] |
Chen J Y, Dong J X, Zhang M C, et al. Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ′ phases [J]. Mater. Sci. Eng., 2016, A673: 122
|
[15] |
Zhang H K, Ma H C, Chang T X, et al. Deformation mechanisms of primary γ′ precipitates in nickel-based superalloy [J]. Scr. Mater., 2023, 224: 115109
|
[16] |
Qu J L, Bi Z N, Du J H, et al. Hot deformation behavior of nickel-based superalloy GH4720Li [J]. J. Iron Steel Res. Int., 2011, 18: 59
|
[17] |
Shen J Y, Hu L X, Sun Y, et al. Hot deformation behaviors and three-dimensional processing map of a nickel-based superalloy with initial dendrite microstructure [J]. J. Alloys Compd., 2020, 822: 153735
|
[18] |
Kan Z, Du L X, Hu J, et al. Influence of microstructure on mechanical property of GH4720 Li alloy [J]. J. Northeast. Univ. (Nat. Sci.), 2017, 38: 46
|
[18] |
阚 志, 杜林秀, 胡 军 等. 微观组织对GH4720 Li合金力学性能的影响 [J]. 东北大学学报(自然科学版), 2017, 38: 46
|
[19] |
Liu C. Evolution and interaction of microstructures of deformed superalloy during preparation process and thermo-mechnical coupling action [D]. Beijing: University of Science and Technology Beijing, 2022
|
[19] |
刘 超. 变形高温合金制备过程和热力耦合作用下组织演变及互影响 [D]. 北京: 北京科技大学, 2022
|
[20] |
Cayron C. Multiple twinning in cubic crystals: Geometric/algebraic study and its application for the identification of the Σ3 n grain boundaries [J]. Acta Crystallogr.: Found. Crystallogr., 2007, 63A: 11
|
[21] |
Ning Y Q, Wang T, Fu M W, et al. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression [J]. Mater. Sci. Eng., 2015, A642: 187
|
[22] |
Xie X F, Qu J L, Du J H. Effect of mixed grain structure on high temperature stress rupture property of Ni-based GH4720Li superalloy [J]. Mater. Rep., 2020, 34(suppl.1): 375
|
[22] |
谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响 [J]. 材料导报, 2020, 34(增刊1): 375
|
[23] |
Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
|
[24] |
Bhowal P R, Wright E F, Raymond E L. Effects of cooling rate and γ′ morphology on creep and stress-rupture properties of a powder metallurgy superalloy [J]. Metall. Trans., 1990, 21A: 1709
|
[25] |
Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
|
[26] |
Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
|
[27] |
Zhao G D. Effect of B and C on solidification segregation and hot ductility of U720Li alloy [D]. Hefei: University of Science and Technology of China, 2017
|
[27] |
赵广迪. B和C对U720Li合金凝固偏析和热加工塑性的影响 [D]. 合肥: 中国科学技术大学, 2017
|
[28] |
Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
|
[29] |
Sinharoy S, Virro-Nic P, Milligan W W. Deformation and strength behavior of two nickel-base turbine disk alloys at 650 oC [J]. Metall. Mater. Trans., 2001, 32A: 2021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|