|
|
奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响 |
张天宇1, 张鹏2, 肖娜3, 王小海2, 刘国强2, 杨志刚1, 张弛1( ) |
1 清华大学 材料学院 北京 100084 2 内蒙古第一机械集团股份有限公司 特种车辆设计制造集成技术全国重点实验室 包头 014030 3 北京汽车研究总院有限公司 北京 101300 |
|
Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel |
ZHANG Tianyu1, ZHANG Peng2, XIAO Na3, WANG Xiaohai2, LIU Guoqiang2, YANG Zhigang1, ZHANG Chi1( ) |
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2 National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Norinco Group Inner Mongolia First Machinery Group Co. Ltd., Baotou 014030, China 3 Beijing Automotive Technology Center Co. Ltd., Beijing 101300, China |
引用本文:
张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
Tianyu ZHANG,
Peng ZHANG,
Na XIAO,
Xiaohai WANG,
Guoqiang LIU,
Zhigang YANG,
Chi ZHANG.
Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel[J]. Acta Metall Sin, 2025, 61(9): 1353-1363.
[1] |
Wang Y L, Wen Z Q. Effect of high temperature quenching on strength and toughness of torsion axle [J]. Heat Treat. Met., 2003, 28(7): 31
|
[1] |
王延龙, 温志强. 高温淬火对扭力轴强韧性的影响 [J]. 金属热处理, 2003, 28(7): 31
|
[2] |
Zhou Z. Dynamic numerical simulation and damage tolerance design of torsion bar under random load [D]. Harbin: Harbin Engineering University, 2004
|
[2] |
周 铮. 随机载荷下扭力轴动态响应的数值仿真分析和损伤容限设计 [D]. 哈尔滨: 哈尔滨工程大学, 2004
|
[3] |
Wu Z Y. Experimental investigation on effection of torsional prestrain on stretch and fatigue behavior of steel 35CrMo [D]. Kunming: Kunming University of Science and Technology, 2012
|
[3] |
吴志煜. 扭转预应变对35CrMo钢拉伸及疲劳性能影响的试验研究 [D]. 昆明: 昆明理工大学, 2012
|
[4] |
Zhou G F, Han F, Jiao B Q, et al. Numerical simulation of pre-twist process and limited carrying capacity of a tank torsional axis [J]. J. Beijing Univ. Technol., 2005, 31: 626
|
[4] |
周国锋, 韩 飞, 焦标强 等. 坦克扭力轴的预扭处理及极限承载的数值模拟 [J]. 北京工业大学学报, 2005, 31: 626
|
[5] |
Yin T W, Shen Y F, Jia N, et al. Controllable selection of martensitic variant enables concurrent enhancement of strength and ductility in a low-carbon steel [J]. Int. J. Plast., 2023, 168: 103704
|
[6] |
Gao B, Lai Q Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling [J]. Sci. Adv., 2020, 6: eaba8169
|
[7] |
Zhou L C, Fang F, Wang L P, et al. Torsion performance of pearlitic steel wires: Effects of morphology and crystallinity of cementite [J]. Mater. Sci. Eng., 2019, A743: 425
|
[8] |
Li Y J, Li L L, Kang J, et al. Achieving unprecedented yield strength of 2.2 GPa with high ductility in formed parts using strain-aging [J]. Scr. Mater., 2023, 233: 115521
|
[9] |
Lv C Q, Cuo D, GAO H F, et al. Effect of helical deformation on fatigue life of torsion shaft by rolling [J]. J. Plast. Eng., 2019, 26(2): 177
|
[9] |
吕彩琴, 郭 东, 高慧峰 等. 滚压加工形成螺旋形变对扭力轴疲劳寿命的影响 [J]. 塑性工程学报, 2019, 26(2): 177
|
[10] |
Liang Z Q, Zhang P, Li X Z, et al. A small roller elliptical low-frequency deep rolling machine tool for high-strength steel torque shaft and its usage method [P]. Chin Pat, 202310058214.3, 2023
|
[10] |
梁志强, 张 鹏, 李学志 等. 一种高强钢扭力轴的小滚轮椭圆低频深滚机床及使用方法 [P]. 中国专利, 202310058214.3, 2023
|
[11] |
Chen Y, Wu C L, Xie P, et al. A phase-transformation-strengthened surface layer on Fe-20Mn-3Al-3Si steel fabricated by mechanical grinding [J]. Acta Metall. Sin., 2014, 50: 423
doi: 10.3724/SP.J.1037.2013.00568
|
[11] |
陈 燕, 伍翠兰, 谢 盼 等. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层 [J]. 金属学报, 2014, 50: 423
|
[12] |
Liu C F, Lei L P, Zeng P. Surface rolling FE model for numerical simulation [J]. J. Plast. Eng., 2012, 19(2): 17
|
[12] |
刘福超, 雷丽萍, 曾 攀. 滚压有限元模型数值模拟 [J]. 塑性工程学报, 2012, 19(2): 17
|
[13] |
Majzoobi G H, Azadikhah K, Nemati J. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 [J]. Mater. Sci. Eng., 2009, A516: 235
|
[14] |
Wang Y L. Influence of pre-torsion processing on fatigue properties of the torsion bar [D]. Shenyang: Northeastern University, 2014
|
[14] |
王玉龙. 预扭处理对扭力轴扭转疲劳性能的影响 [D]. 沈阳: 东北大学, 2014
|
[15] |
Li B C, Zhao J P, Zhang Z M. The discuss for temper-temperature of steel 45CrNiMoV [J]. New Technol. New Process, 2003, (4): 33
|
[15] |
李保成, 赵家萍, 张治民. 45CrNiMoV钢回火温度讨论 [J]. 新技术新工艺, 2003, (4): 33
|
[16] |
Porter D A, Easterling K E, Sherif M Y, translated by Chen L, Yu Y N. Phase Transformations in Metals and Alloys [M]. Beijing: Higher Education Press, 2011: 269
|
[16] |
Porter D A, Easterling K E, Sherif M Y著, 陈 冷, 余永宁译. 金属和合金中的相变 [M]. 北京: 高等教育出版社, 2011: 269
|
[17] |
Liang K, Yao Z H, Xie X S, et al. Correlation between microstructure and properties of new heat-resistant alloy SP2215 [J]. Acta Metal. Sin., 2023, 59: 797
|
[17] |
梁 凯, 姚志浩, 谢锡善 等. 新型耐热合金SP2215组织与性能的关联性 [J]. 金属学报, 2023, 59: 797
|
[18] |
Wang B, Zhang P, Liu R, et al. An optimization criterion for fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2018, A736: 105
|
[19] |
Pang J C. Investigation on fatigue and fracture of high-strength metallic materials [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
|
[19] |
庞建超. 高强度金属材料的疲劳与断裂研究 [D]. 沈阳: 中国科学院金属研究所, 2012
|
[20] |
Wei X L, Zhang C, Han S Y, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. Int. J. Fatigue, 2022, 163: 107050
|
[21] |
Xu Z K. High-cycle fatigue behaviors of martensitic ultra-high strength steel [D]. Hefei: University of Science and Technology of China, 2022
|
[21] |
许自宽. 马氏体组织超高强钢高周疲劳行为研究 [D]. 合肥: 中国科学技术大学, 2022
|
[22] |
Xu Z K, Wang B, Zhang P, et al. Crack branching and deflection in AISI 4340 steel under cyclic torsional loading [J]. Mater. Sci. Eng., 2023, A863: 144561
|
[23] |
Vladar A, Postek M. Electron beam-induced sample contamination in the SEM [J]. Microsc. Microanal., 2005, 11: 764
|
[24] |
Li S, Yang Z N, Zhang C, et al. Phase field study of the diffusional paths in pearlite-austenite transformation [J]. Acta Metall. Sin., 2023, 59: 1376
doi: 10.11900/0412.1961.2021.00306
|
[24] |
李 赛, 杨泽南, 张 弛 等. 珠光体-奥氏体相变中扩散通道的相场法研究 [J]. 金属学报, 2023, 59: 1376
|
[25] |
Cheng Y Y, Zhao G, Xu D M, et al. Effect of austenitizing temperature on microstructures and mechanical properties of Si-Mn hot-rolled plate after quenching and partitioning treatment [J]. Acta Metall. Sin., 2023, 59: 413
doi: 10.11900/0412.1961.2021.00243
|
[25] |
程远遥, 赵 刚, 许德明 等. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响 [J]. 金属学报, 2023, 59: 413
doi: 10.11900/0412.1961.2021.00243
|
[26] |
Wang Y T, Adachi Y, Nakajima K, et al. Quantitative three-dimensional characterization of pearlite spheroidization [J]. Acta Mater., 2010, 58: 4849
|
[27] |
Amos P G K, Bhattacharya A, Nestler B, et al. Mechanisms of pearlite spheroidization: insights from 3D phase-field simulations [J]. Acta Mater., 2018, 161: 400
|
[28] |
Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|