Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1353-1363    DOI: 10.11900/0412.1961.2024.00005
  研究论文 本期目录 | 过刊浏览 |
奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响
张天宇1, 张鹏2, 肖娜3, 王小海2, 刘国强2, 杨志刚1, 张弛1()
1 清华大学 材料学院 北京 100084
2 内蒙古第一机械集团股份有限公司 特种车辆设计制造集成技术全国重点实验室 包头 014030
3 北京汽车研究总院有限公司 北京 101300
Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel
ZHANG Tianyu1, ZHANG Peng2, XIAO Na3, WANG Xiaohai2, LIU Guoqiang2, YANG Zhigang1, ZHANG Chi1()
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Norinco Group Inner Mongolia First Machinery Group Co. Ltd., Baotou 014030, China
3 Beijing Automotive Technology Center Co. Ltd., Beijing 101300, China
引用本文:

张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
Tianyu ZHANG, Peng ZHANG, Na XIAO, Xiaohai WANG, Guoqiang LIU, Zhigang YANG, Chi ZHANG. Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel[J]. Acta Metall Sin, 2025, 61(9): 1353-1363.

全文: PDF(5300 KB)   HTML
摘要: 

2 GPa级超高强度钢已成为扭力轴的候选材料之一。然而,关于其显微组织与力学性能之间关系的研究相对较少。本工作采用SEM、EBSD、AES、TEM、单轴拉伸和静态扭转等方法研究了奥氏体化温度对扭力轴用2 GPa超高强钢的显微组织、拉伸力学性能和静态扭转性能的影响。结果表明,在奥氏体化过程中,初始组织(珠光体和少量铁素体组成)中片层状合金渗碳体先球化后溶解,其球化机制主要以非连续辅助机制为主,包含少量的边缘迁移机制。随着奥氏体化温度的升高,渗碳体逐渐由(Fe, Cr, V)3C合金渗碳体转变为Fe3C渗碳体,直至渗碳体完全溶解(奥氏体化温度为950 ℃时),并且VC的析出温度区间与渗碳体未溶解的温度区间相一致。奥氏体化温度为850 ℃时实验用钢获得了较优的拉伸力学性能,屈服强度、抗拉强度、均匀延伸率和总延伸率分别为1580 MPa、2062 MPa、8.4%和12.7%,这源于显微组织中渗碳体和VC提供的析出强化,以及细小的马氏体板条提供的细晶强化。静态扭转实验结果表明,当奥氏体化温度为800和850 ℃时,由于含有更多渗碳体和VC以及细小的马氏体板条,试样表现出更高的剪切模量和扭转屈服强度。随奥氏体化温度升高,剪切塑性变形区增加,断裂主导机制由剪切断裂转变为剪切韧性断裂,从而表现出更高的抗扭强度。

关键词 奥氏体化温度渗碳体拉伸力学性能扭转性能    
Abstract

Recently, 2 GPa grade ultra-high strength steel has emerged as a potential candidate material for torsional axles. Nevertheless, studies focusing on the correlation between the microstructure and mechanical properties are scarce. To address this, the current study investigates the impact of austenitizing temperature on the microstructure, tensile mechanical properties, and static torsional properties of 2 GPa grade ultra-high strength steel used in torsion axles. Various techniques including SEM, EBSD, AES, TEM, uniaxial tension, and static torsion are employed. During the austenitizing process, the lamellar cementite in the initial microstructure (composed of pearlite and a minimal amount of ferrite) first spheroidized and then dissolved. This spheroidization process is primarily dominated by discontinuity-assisted spheroidization, with minimal contributions from termination-migration-assisted spheroidization. With increasing austenitizing temperature, the cementite gradually transforms from (Fe, Cr, V)3C to Fe3C, eventually completely dissolving (at the austenitizing temperature of 950 oC). Moreover, the precipitation temperature range of vanadium carbide is consistent with the temperature range of undissolved cementite. Additionally, austenitizing at 850 oC and tempering at 220 oC results in better tensile properties, including a yield strength of 1580 MPa, tensile strength of 2062 MPa, uniform elongation of 8.4%, and total elongation of approximately 12.7%. These improvements are attributed to the precipitation strengthening enabled by cementite and vanadium carbide and the fine grain strengthening provided by fine martensite block sizes. The static torsion test results show that when the austenitizing temperature is 800 and 850 oC, the sample shows the best shear moduli and torsional yield strength due to the increased cementite and vanadium carbide contents, along with fine martensite block sizes. With increasing austenitizing temperature, the shear plastic deformation zone expands, and the predominant fracture mechanism changes from shear fracture to shear ductile fracture, resulting in higher torsional strengths.

Key wordsaustenitizing temperature    cementite    tensile mechanical property    torsional property
收稿日期: 2024-01-11     
ZTFLH:  TG142  
基金资助:内蒙古自治区科技计划重大专项项目(2020ZD0027);特种车辆设计制造集成技术全国重点实验室开放课题项目(GZ-2022KF005)
通讯作者: 张 弛,chizhang@mail.tsinghua.edu.cn,主要从事材料组织和性能关系、极端条件下服役材料方面的研究
Corresponding author: ZHANG Chi, professor, Tel: (010)62782361, E-mail: chizhang@mail.tsinghua.edu.cn
作者简介: 张天宇,男,1992年生,博士
图1  热处理工艺示意图
图2  热轧试样显微组织的SEM像及元素分析结果
图3  不同热处理试样显微组织的SEM像及渗碳体直径与体积分数随奥氏体化温度的变化
图4  Q800T、Q850T和Q900T试样析出相的元素分布图
图5  Q800T、Q850T、Q900T和Q950T试样的TEM像和STEM-EDS元素面分布图
图6  Q800T、Q850T、Q900T、Q950T和Q1000T试样的EBSD取向成像图和马氏体块尺寸随奥氏体化温度变化的统计图
图7  Q800T、Q850T、Q900T、Q950T和Q1000T试样的晶界分布图和高角度晶界比例统计图
图8  不同热处理试样的拉伸力学性能
图9  不同热处理试样的扭转剪切应力-应变曲线
T / oCG / GPaτp0.3 / MPaτm / MPa
80082.611601610
85082.611701680
90081.111501690
95078.811301710
100080.611301690
表1  不同热处理试样的扭转性能
图10  由Thermo-Calc计算的VC驱动力随奥氏体化温度的变化
图11  Q800T、Q850T和Q1000T试样扭转断口形貌的SEM像
[1] Wang Y L, Wen Z Q. Effect of high temperature quenching on strength and toughness of torsion axle [J]. Heat Treat. Met., 2003, 28(7): 31
[1] 王延龙, 温志强. 高温淬火对扭力轴强韧性的影响 [J]. 金属热处理, 2003, 28(7): 31
[2] Zhou Z. Dynamic numerical simulation and damage tolerance design of torsion bar under random load [D]. Harbin: Harbin Engineering University, 2004
[2] 周 铮. 随机载荷下扭力轴动态响应的数值仿真分析和损伤容限设计 [D]. 哈尔滨: 哈尔滨工程大学, 2004
[3] Wu Z Y. Experimental investigation on effection of torsional prestrain on stretch and fatigue behavior of steel 35CrMo [D]. Kunming: Kunming University of Science and Technology, 2012
[3] 吴志煜. 扭转预应变对35CrMo钢拉伸及疲劳性能影响的试验研究 [D]. 昆明: 昆明理工大学, 2012
[4] Zhou G F, Han F, Jiao B Q, et al. Numerical simulation of pre-twist process and limited carrying capacity of a tank torsional axis [J]. J. Beijing Univ. Technol., 2005, 31: 626
[4] 周国锋, 韩 飞, 焦标强 等. 坦克扭力轴的预扭处理及极限承载的数值模拟 [J]. 北京工业大学学报, 2005, 31: 626
[5] Yin T W, Shen Y F, Jia N, et al. Controllable selection of martensitic variant enables concurrent enhancement of strength and ductility in a low-carbon steel [J]. Int. J. Plast., 2023, 168: 103704
[6] Gao B, Lai Q Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling [J]. Sci. Adv., 2020, 6: eaba8169
[7] Zhou L C, Fang F, Wang L P, et al. Torsion performance of pearlitic steel wires: Effects of morphology and crystallinity of cementite [J]. Mater. Sci. Eng., 2019, A743: 425
[8] Li Y J, Li L L, Kang J, et al. Achieving unprecedented yield strength of 2.2 GPa with high ductility in formed parts using strain-aging [J]. Scr. Mater., 2023, 233: 115521
[9] Lv C Q, Cuo D, GAO H F, et al. Effect of helical deformation on fatigue life of torsion shaft by rolling [J]. J. Plast. Eng., 2019, 26(2): 177
[9] 吕彩琴, 郭 东, 高慧峰 等. 滚压加工形成螺旋形变对扭力轴疲劳寿命的影响 [J]. 塑性工程学报, 2019, 26(2): 177
[10] Liang Z Q, Zhang P, Li X Z, et al. A small roller elliptical low-frequency deep rolling machine tool for high-strength steel torque shaft and its usage method [P]. Chin Pat, 202310058214.3, 2023
[10] 梁志强, 张 鹏, 李学志 等. 一种高强钢扭力轴的小滚轮椭圆低频深滚机床及使用方法 [P]. 中国专利, 202310058214.3, 2023
[11] Chen Y, Wu C L, Xie P, et al. A phase-transformation-strengthened surface layer on Fe-20Mn-3Al-3Si steel fabricated by mechanical grinding [J]. Acta Metall. Sin., 2014, 50: 423
doi: 10.3724/SP.J.1037.2013.00568
[11] 陈 燕, 伍翠兰, 谢 盼 等. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层 [J]. 金属学报, 2014, 50: 423
[12] Liu C F, Lei L P, Zeng P. Surface rolling FE model for numerical simulation [J]. J. Plast. Eng., 2012, 19(2): 17
[12] 刘福超, 雷丽萍, 曾 攀. 滚压有限元模型数值模拟 [J]. 塑性工程学报, 2012, 19(2): 17
[13] Majzoobi G H, Azadikhah K, Nemati J. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 [J]. Mater. Sci. Eng., 2009, A516: 235
[14] Wang Y L. Influence of pre-torsion processing on fatigue properties of the torsion bar [D]. Shenyang: Northeastern University, 2014
[14] 王玉龙. 预扭处理对扭力轴扭转疲劳性能的影响 [D]. 沈阳: 东北大学, 2014
[15] Li B C, Zhao J P, Zhang Z M. The discuss for temper-temperature of steel 45CrNiMoV [J]. New Technol. New Process, 2003, (4): 33
[15] 李保成, 赵家萍, 张治民. 45CrNiMoV钢回火温度讨论 [J]. 新技术新工艺, 2003, (4): 33
[16] Porter D A, Easterling K E, Sherif M Y, translated by Chen L, Yu Y N. Phase Transformations in Metals and Alloys [M]. Beijing: Higher Education Press, 2011: 269
[16] Porter D A, Easterling K E, Sherif M Y著, 陈 冷, 余永宁译. 金属和合金中的相变 [M]. 北京: 高等教育出版社, 2011: 269
[17] Liang K, Yao Z H, Xie X S, et al. Correlation between microstructure and properties of new heat-resistant alloy SP2215 [J]. Acta Metal. Sin., 2023, 59: 797
[17] 梁 凯, 姚志浩, 谢锡善 等. 新型耐热合金SP2215组织与性能的关联性 [J]. 金属学报, 2023, 59: 797
[18] Wang B, Zhang P, Liu R, et al. An optimization criterion for fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2018, A736: 105
[19] Pang J C. Investigation on fatigue and fracture of high-strength metallic materials [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
[19] 庞建超. 高强度金属材料的疲劳与断裂研究 [D]. 沈阳: 中国科学院金属研究所, 2012
[20] Wei X L, Zhang C, Han S Y, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. Int. J. Fatigue, 2022, 163: 107050
[21] Xu Z K. High-cycle fatigue behaviors of martensitic ultra-high strength steel [D]. Hefei: University of Science and Technology of China, 2022
[21] 许自宽. 马氏体组织超高强钢高周疲劳行为研究 [D]. 合肥: 中国科学技术大学, 2022
[22] Xu Z K, Wang B, Zhang P, et al. Crack branching and deflection in AISI 4340 steel under cyclic torsional loading [J]. Mater. Sci. Eng., 2023, A863: 144561
[23] Vladar A, Postek M. Electron beam-induced sample contamination in the SEM [J]. Microsc. Microanal., 2005, 11: 764
[24] Li S, Yang Z N, Zhang C, et al. Phase field study of the diffusional paths in pearlite-austenite transformation [J]. Acta Metall. Sin., 2023, 59: 1376
doi: 10.11900/0412.1961.2021.00306
[24] 李 赛, 杨泽南, 张 弛 等. 珠光体-奥氏体相变中扩散通道的相场法研究 [J]. 金属学报, 2023, 59: 1376
[25] Cheng Y Y, Zhao G, Xu D M, et al. Effect of austenitizing temperature on microstructures and mechanical properties of Si-Mn hot-rolled plate after quenching and partitioning treatment [J]. Acta Metall. Sin., 2023, 59: 413
doi: 10.11900/0412.1961.2021.00243
[25] 程远遥, 赵 刚, 许德明 等. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响 [J]. 金属学报, 2023, 59: 413
doi: 10.11900/0412.1961.2021.00243
[26] Wang Y T, Adachi Y, Nakajima K, et al. Quantitative three-dimensional characterization of pearlite spheroidization [J]. Acta Mater., 2010, 58: 4849
[27] Amos P G K, Bhattacharya A, Nestler B, et al. Mechanisms of pearlite spheroidization: insights from 3D phase-field simulations [J]. Acta Mater., 2018, 161: 400
[28] Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
[1] 谢泽东, 丁灿灿, 温鹏宇, 罗海文. 闪速加热对2000 MPa级热成形钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(12): 1667-1677.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[4] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[5] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[6] 薛滢妤, 唐建成, 卓海鸥, 叶楠, 吴桐, 周旭升. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*[J]. 金属学报, 2015, 51(2): 223-229.
[7] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[8] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[9] 郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.
[10] 董福涛, 杜林秀, 刘相华, 薛飞. 连续退火工艺对含B搪瓷用钢组织性能的影响[J]. 金属学报, 2013, 49(10): 1160-1168.
[11] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[12] 李龙飞, 夏杨青, 孙祖庆, 杨王玥 . 中碳钢回火马氏体热变形过程中的铁素体动态再结晶[J]. 金属学报, 2010, 46(1): 19-26.
[13] 陈伟 李龙飞 杨王玥 孙祖庆 何建平. 过共析钢温变形过程中的组织演变 I. 铁素体的等轴化及Al的影响[J]. 金属学报, 2009, 45(2): 151-155.
[14] 陈伟 李龙飞 杨王玥 孙祖庆 张艳. 过共析钢温变形过程中的组织演变 II. 渗碳体的球化及Al的影响[J]. 金属学报, 2009, 45(2): 156-160.
[15] 吴钱林; 孙扬善; 薛烽; 周健 . 电渣重熔对TiC强化2Cr13不锈钢力学性能和断口的影响[J]. 金属学报, 2008, 44(6): 745-750 .