|
|
异构FeCoNi中熵合金的软磁与力学行为 |
葛蓬华, 张勇, 李志明( ) |
中南大学 材料科学与工程学院 长沙 410083 |
|
Soft-Magnetic and Mechanical Behaviors of Heterostructured FeCoNi Medium-Entropy Alloys |
GE Penghua, ZHANG Yong, LI Zhiming( ) |
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
引用本文:
葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
Penghua GE,
Yong ZHANG,
Zhiming LI.
Soft-Magnetic and Mechanical Behaviors of Heterostructured FeCoNi Medium-Entropy Alloys[J]. Acta Metall Sin, 2025, 61(7): 1119-1128.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
4 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
5 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
6 |
Ge P H, Gan K F, Yan D S, et al. Elucidating the origination of annealing-induced hardening in an equiatomic medium-entropy alloy [J]. Adv. Eng. Mater., 2023, 25: 2201153
|
7 |
Chen Y, Deng H W, Xie Z M, et al. Tailoring microstructures and tensile properties of a precipitation-strengthened (FeCoNi)94Ti6 medium-entropy alloy [J]. J. Alloys Compd., 2020, 828: 154457
|
8 |
Rao Z Y, Ponge D, Körmann F, et al. Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design [J]. Intermetallics, 2019, 111: 106520
|
9 |
Han L L, Maccari F, Souza Filho I R, et al. A mechanically strong and ductile soft magnet with extremely low coercivity [J]. Nature, 2022, 608: 310
|
10 |
Feng W Q, Qi Y, Wang S Q. Effects of Mn and Al addition on structural and magnetic properties of FeCoNi-based high entropy alloys [J]. Mater. Res. Express, 2018, 5: 106511
|
11 |
Fu Z Q, Macdonald B E, Dupuy A D, et al. Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite [J]. Appl. Matertoday, 2019, 15: 590
|
12 |
Fu Z Q, Macdonald B E, Monson T C, et al. Influence of heat treatment on microstructure, mechanical behavior, and soft magnetic properties in an fcc-based Fe29Co28Ni29Cu7Ti7 high-entropy alloy [J]. J. Mater. Res., 2018, 33: 2214
|
13 |
Han L L, Rao Z Y, Souza Filho I R, et al. Ultrastrong and ductile soft magnetic high‐entropy alloys via coherent ordered nanoprecipitates [J]. Adv. Mater., 2021, 33: 2102139
|
14 |
Li P P, Wang A D, Liu C T. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl) x high entropy alloys [J]. Intermetallics, 2017, 87: 21
|
15 |
Zhang Q, Xu H, Tan X H, et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) x (x = 0-1.2) high-entropy alloys [J]. J. Alloys Compd., 2017, 693: 1061
|
16 |
Zhang H, Yang Y X, Liu L, et al. A novel FeCoNiCr0.2Si0.2 high entropy alloy with an excellent balance of mechanical and soft magnetic properties [J]. J. Magn. Magn. Mater., 2019, 478: 116
doi: 10.1016/j.jmmm.2019.01.096
|
17 |
Chen C, Zhang H, Fan Y Z, et al. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties [J]. J. Magn. Magn. Mater., 2020, 502: 166513
|
18 |
Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Sci. Rep., 2013, 3: 1455
doi: 10.1038/srep01455
pmid: 23492734
|
19 |
Tang Y J, Sun S B, Lv M X, et al. Effect of Ho addition on AC soft magnetic property, microstructure and magnetic domain of FeCoNi(CuAl)0.8Ho x (x = 0-0.07) high-entropy alloys [J]. Intermetallics, 2021, 135: 107216
|
20 |
Guo Y H, Li M Y, Li P, et al. Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys [J]. J. Alloys Compd., 2020, 820: 153104
|
21 |
Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
|
22 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
pmid: 26554017
|
23 |
Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
|
24 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
|
25 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
26 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1
pmid: 31819051
|
27 |
Zhu S Y, Yan D S, Gan K F, et al. Awakening the metastability of an interstitial high entropy alloy via severe deformation [J]. Scr. Mater., 2021, 191: 96
|
28 |
Gottstein G. Physical Foundations of Materials Science [M]. Heidelberg: Berlin, 2004: 12
|
29 |
Hubert A, Schäfer R. Magnetic Domains: The Analysis of Magnetic Microstructures [M]. New York: Springer, 2008: 369
|
30 |
Jen S U, Chiang H P, Chung C M, et al. Magnetic properties of Co-Fe-Ni films [J]. J. Magn. Magn. Mater., 2001, 236: 312
|
31 |
Coey J M D. Magnetism and Magnetic Materials [M]. Cambridge: Cambridge University Press, 2010: 448
|
32 |
Zhong W D. Ferromagnetism [M]. Beijing: Science Press, 2017: 182
|
32 |
钟文定. 铁磁学 [M]. 北京: 科学出版社, 2017: 182
|
33 |
Mchenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets [J]. Prog. Mater. Sci., 1999, 44: 291
|
34 |
Peng X L, Ge H L, Wang X Q. Magnetic Materials and Magnetic Measurement [M]. Beijing: Chemical Industry Press, 2019: 186
|
34 |
彭晓领, 葛洪良, 王新庆. 磁性材料与磁测量 [M]. 北京: 化学工业出版社, 2019: 186
|
35 |
Wu P F, Gan K F, Yan D S, et al. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy [J]. Corros. Sci., 2021, 183: 109341
|
36 |
Yang Z M, Yan D S, Lu W J, et al. A TWIP-TRIP quinary high-entropy alloy: Tuning phase stability and microstructure for enhanced mechanical properties [J]. Mater. Sci. Eng., 2021, A801: 140441
|
37 |
Zhao S J, Stocks G M, Zhang Y W. Stacking fault energies of face-centered cubic concentrated solid solution alloys [J]. Acta Mater., 2017, 134: 334
|
38 |
Gibeling J G, Nix W D. A numerical study of long range internal stresses associated with subgrain boundaries [J]. Acta Metall., 1980, 28: 1743
|
39 |
Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals [J]. Acta Metall., 1983, 31: 1367
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|