Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1119-1128    DOI: 10.11900/0412.1961.2023.00215
  研究论文 本期目录 | 过刊浏览 |
异构FeCoNi中熵合金的软磁与力学行为
葛蓬华, 张勇, 李志明()
中南大学 材料科学与工程学院 长沙 410083
Soft-Magnetic and Mechanical Behaviors of Heterostructured FeCoNi Medium-Entropy Alloys
GE Penghua, ZHANG Yong, LI Zhiming()
School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
Penghua GE, Yong ZHANG, Zhiming LI. Soft-Magnetic and Mechanical Behaviors of Heterostructured FeCoNi Medium-Entropy Alloys[J]. Acta Metall Sin, 2025, 61(7): 1119-1128.

全文: PDF(4086 KB)   HTML
摘要: 

传统软磁合金的力学性能难以满足复杂加工成型或高强度机械负荷的要求,而新型中/高熵软磁合金往往以部分牺牲比饱和磁化强度(Ms)为代价来实现优良力学性能。本工作通过调控冷轧态等原子比FeCoNi中熵合金的退火工艺,获得再结晶体积分数约为49%的异构组织。基于微观组织表征、直流软磁测试、磁光Kerr显微成像分析、拉伸力学测试等手段,研究了异构对FeCoNi中熵合金软磁和力学性能的影响机理。结果表明,该种异构合金的Ms约为152.5 A·m2/kg,与均匀再结晶合金在同等条件下测得的数值相近;其矫顽力约为205.3 A/m,低于均匀未再结晶合金(242.2 A/m),但高于均匀再结晶合金(79.8 A/m)。异构FeCoNi中熵合金中,再结晶区磁畴壁的移动较平滑,仅在晶界和孪晶界处受到明显的钉扎作用;未再结晶区域缺陷密度较高,对磁畴壁的钉扎作用更强,磁畴壁在外加磁场作用下的移动较缓慢,使矫顽力升高。应力加载时,异构组织中的长程背应力效应可提升合金屈服强度,各区域的协调变形可优化加工硬化能力,使合金屈服强度(σy)达到467 MPa,抗拉强度(σu)达到610 MPa,且延伸率(δ)保持在30%,与均匀未再结晶合金(σy = 772 MPa、δ = 15%)和均匀再结晶合金(σy = 232 MPa、δ = 43%)相比拥有更好的强塑性搭配。

关键词 FeCoNi中熵合金异构部分再结晶力学性能软磁性能    
Abstract

The equiatomic FeCoNi medium-entropy alloy (MEA) demonstrates promising attributes as a soft-magnetic material, including high saturation magnetization, high Curie temperature, and excellent ductility. However, its practical applications are constrained by relatively low yield and ultimate strengths. Recent studies explored strengthening FeCoNi alloy through the addition of other alloying elements or nanosized oxide particles (e.g., Al, Ti, Ta, and Y2O3). Although these additions often result in decreased saturation magnetization, they adversely affect the soft-magnetic properties. In this study, a heterostructured FeCoNi MEA, with approximately 49% (volume fraction) recrystallization, is achieved through annealing treatment. The influence of this heterostructure on mechanical and soft-magnetic behaviors of the MEA is systematically investigated. The results indicate that the heterostructured alloy maintains a specific saturation magnetization comparable to the fully-recrystallized version, approximately 152.5 A·m2/kg. Its coercivity, at 205.3 A/m, is lower than the non-recrystallized alloy (242.2 A/m) but higher than the fully recrystallized version (79.8 A/m). Magneto-optical Kerr analysis reveals that recrystallized zones in the heterostructure rapidly respond to external magnetic field changes, whereas non-recrystallized zones strongly interact with Bloch walls, pinning domain movement and thereby increasing coercivity. Furthermore, the heterostructured alloy exhibits enhanced mechanical properties: yield strength (σy) at 467 MPa, ultimate tensile strength (σu) at 610 MPa, and total elongation (δ) at 30%. This performance surpasses that of fully non-recrystallized (σy = 772 MPa, δ = 15%) and fully recrystallized (σy = 232 MPa, δ = 43%) alloys. These improved mechanical properties are partly attributable to long-range back stress, arising from the combination of soft recrystallized and strong non-recrystallized zones. This stress, produced by the strain gradient in the heterostructure, impedes geometrically necessary dislocations from slipping and enhances deformation compatibility, thereby preventing premature fracture. According to Ashby-type maps, the proposed heterostructured FeCoNi MEA bridges the gap between traditional soft-magnetic alloys and novel FeCoNi-based alloys in terms of soft-magnetic and mechanical properties.

Key wordsFeCoNi medium-entropy alloy    heterostructure    partial recrystallization    mechanical property    soft-magnetic property
收稿日期: 2023-05-11     
ZTFLH:  TG132.2  
基金资助:国家自然科学基金项目(51971248);湖南省重大基础研究项目(2024JC0003)
通讯作者: 李志明,lizhiming@csu.edu.cn,主要从事先进多组元合金的设计、加工、组织与性能研究
作者简介: 葛蓬华,男,1999年生,博士生
图1  等原子比FeCoNi中熵合金经不同温度退火30 min后的XRD谱
图2  等原子比FeCoNi中熵合金样品经不同温度退火后的EBSD分析
图3  等原子比FeCoNi中熵合金经不同温度退火30 min后的磁滞回线
图4  异构等原子比FeCoNi中熵合金的磁光Kerr显微成像分析
图5  等原子比FeCoNi 中熵合金经不同温度退火30 min后的力学性能
图6  异构样品不同局部应变区域的电子通道衬度(ECC)成像及局部应变分布曲线
图7  异构对等原子比FeCoNi中熵合金力学和软磁性能协同影响机理示意图
图8  异构等原子比FeCoNi中熵合金与传统软磁合金[34]以及新兴FeCoNi基高熵合金[11~14,16,17]力学-软磁性能对比
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
4 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
5 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
6 Ge P H, Gan K F, Yan D S, et al. Elucidating the origination of annealing-induced hardening in an equiatomic medium-entropy alloy [J]. Adv. Eng. Mater., 2023, 25: 2201153
7 Chen Y, Deng H W, Xie Z M, et al. Tailoring microstructures and tensile properties of a precipitation-strengthened (FeCoNi)94Ti6 medium-entropy alloy [J]. J. Alloys Compd., 2020, 828: 154457
8 Rao Z Y, Ponge D, Körmann F, et al. Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design [J]. Intermetallics, 2019, 111: 106520
9 Han L L, Maccari F, Souza Filho I R, et al. A mechanically strong and ductile soft magnet with extremely low coercivity [J]. Nature, 2022, 608: 310
10 Feng W Q, Qi Y, Wang S Q. Effects of Mn and Al addition on structural and magnetic properties of FeCoNi-based high entropy alloys [J]. Mater. Res. Express, 2018, 5: 106511
11 Fu Z Q, Macdonald B E, Dupuy A D, et al. Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite [J]. Appl. Matertoday, 2019, 15: 590
12 Fu Z Q, Macdonald B E, Monson T C, et al. Influence of heat treatment on microstructure, mechanical behavior, and soft magnetic properties in an fcc-based Fe29Co28Ni29Cu7Ti7 high-entropy alloy [J]. J. Mater. Res., 2018, 33: 2214
13 Han L L, Rao Z Y, Souza Filho I R, et al. Ultrastrong and ductile soft magnetic high‐entropy alloys via coherent ordered nanoprecipitates [J]. Adv. Mater., 2021, 33: 2102139
14 Li P P, Wang A D, Liu C T. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl) x high entropy alloys [J]. Intermetallics, 2017, 87: 21
15 Zhang Q, Xu H, Tan X H, et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) x (x = 0-1.2) high-entropy alloys [J]. J. Alloys Compd., 2017, 693: 1061
16 Zhang H, Yang Y X, Liu L, et al. A novel FeCoNiCr0.2Si0.2 high entropy alloy with an excellent balance of mechanical and soft magnetic properties [J]. J. Magn. Magn. Mater., 2019, 478: 116
doi: 10.1016/j.jmmm.2019.01.096
17 Chen C, Zhang H, Fan Y Z, et al. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties [J]. J. Magn. Magn. Mater., 2020, 502: 166513
18 Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Sci. Rep., 2013, 3: 1455
doi: 10.1038/srep01455 pmid: 23492734
19 Tang Y J, Sun S B, Lv M X, et al. Effect of Ho addition on AC soft magnetic property, microstructure and magnetic domain of FeCoNi(CuAl)0.8Ho x (x = 0-0.07) high-entropy alloys [J]. Intermetallics, 2021, 135: 107216
20 Guo Y H, Li M Y, Li P, et al. Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys [J]. J. Alloys Compd., 2020, 820: 153104
21 Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
22 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112 pmid: 26554017
23 Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
24 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
25 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
26 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
27 Zhu S Y, Yan D S, Gan K F, et al. Awakening the metastability of an interstitial high entropy alloy via severe deformation [J]. Scr. Mater., 2021, 191: 96
28 Gottstein G. Physical Foundations of Materials Science [M]. Heidelberg: Berlin, 2004: 12
29 Hubert A, Schäfer R. Magnetic Domains: The Analysis of Magnetic Microstructures [M]. New York: Springer, 2008: 369
30 Jen S U, Chiang H P, Chung C M, et al. Magnetic properties of Co-Fe-Ni films [J]. J. Magn. Magn. Mater., 2001, 236: 312
31 Coey J M D. Magnetism and Magnetic Materials [M]. Cambridge: Cambridge University Press, 2010: 448
32 Zhong W D. Ferromagnetism [M]. Beijing: Science Press, 2017: 182
32 钟文定. 铁磁学 [M]. 北京: 科学出版社, 2017: 182
33 Mchenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets [J]. Prog. Mater. Sci., 1999, 44: 291
34 Peng X L, Ge H L, Wang X Q. Magnetic Materials and Magnetic Measurement [M]. Beijing: Chemical Industry Press, 2019: 186
34 彭晓领, 葛洪良, 王新庆. 磁性材料与磁测量 [M]. 北京: 化学工业出版社, 2019: 186
35 Wu P F, Gan K F, Yan D S, et al. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy [J]. Corros. Sci., 2021, 183: 109341
36 Yang Z M, Yan D S, Lu W J, et al. A TWIP-TRIP quinary high-entropy alloy: Tuning phase stability and microstructure for enhanced mechanical properties [J]. Mater. Sci. Eng., 2021, A801: 140441
37 Zhao S J, Stocks G M, Zhang Y W. Stacking fault energies of face-centered cubic concentrated solid solution alloys [J]. Acta Mater., 2017, 134: 334
38 Gibeling J G, Nix W D. A numerical study of long range internal stresses associated with subgrain boundaries [J]. Acta Metall., 1980, 28: 1743
39 Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals [J]. Acta Metall., 1983, 31: 1367
[1] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[2] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[3] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[4] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[5] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[6] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[7] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[8] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[9] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[10] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[11] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[12] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[13] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[14] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[15] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.