Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1109-1118    DOI: 10.11900/0412.1961.2023.00207
  研究论文 本期目录 | 过刊浏览 |
基于X射线体视成像实现高温合金熔体凝固三维显微结构的原位观测
王飞翔1, 陈忠奉2, 尹晓宇2, 熊良华2, 谢红兰1, 邓彪1, 肖体乔1()
1 中国科学院上海高等研究院 上海光源科学中心 上海 201204
2 上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240
In Situ Observation of Three-Dimensional Solidification Microstructure of Superalloy Melt Based on X-Ray Stereo Imaging
WANG Feixiang1, CHEN Zhongfeng2, YIN Xiaoyu2, XIONG Lianghua2, XIE Honglan1, DENG Biao1, XIAO Tiqiao1()
1 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
2 Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

王飞翔, 陈忠奉, 尹晓宇, 熊良华, 谢红兰, 邓彪, 肖体乔. 基于X射线体视成像实现高温合金熔体凝固三维显微结构的原位观测[J]. 金属学报, 2025, 61(7): 1109-1118.
Feixiang WANG, Zhongfeng CHEN, Xiaoyu YIN, Lianghua XIONG, Honglan XIE, Biao DENG, Tiqiao XIAO. In Situ Observation of Three-Dimensional Solidification Microstructure of Superalloy Melt Based on X-Ray Stereo Imaging[J]. Acta Metall Sin, 2025, 61(7): 1109-1118.

全文: PDF(2141 KB)   HTML
摘要: 

同步辐射X射线成像有着较高的穿透性和空间分辨率,在高温金属熔体凝固过程中微观组织形貌演化的原位观测方面有着巨大应用前景。但是二维投影成像往往丢失样品的深度信息而无法三维表征。受限于CT原位装置的时间分辨率,现有成像方法很难对高温金属熔体凝固组织进行三维动态形貌观察。本工作提出了一种可快速获取三维空间信息的同步辐射体视成像技术,利用双目视差原理,通过旋转载物台获得2个角度的透视投影图像,经立体匹配后获取双目视差实现目标物体深度信息的重建。相较于CT成像,该方法可以快速实现对目标物的准确三维重建。利用深度关系确定的静态螺旋金属丝样品,验证了该方法的有效性。并将该方法应用在高温合金熔体凝固过程的三维表征中,重建了凝固组织在厚度方向的位向关系。

关键词 同步辐射体视成像深度信息快速重建高温合金熔体凝固    
Abstract

The use of synchrotron radiation X-ray imaging, with its high spatiotemporal resolution and strong penetration capabilities, holds significant promise for the in situ observation of three-dimensional microstructure evolution during the solidification of superalloy melts. However, the conventional computed tomography (CT) imaging technique has limitations for capturing the dynamic solidification of superalloy melts because of the limitations of in situ solidification equipment. This work introduces a synchrotron radiation X-ray stereo imaging technique that facilitates the swift acquisition of three-dimensional spatial data. Based on the principles of binocular parallax, the stereo imaging method leverages projections obtained from two distinct angles to derive depth information about a specific region of interest. This approach boasts notable enhancements in data acquisition speed and image reconstruction when compared with CT techniques. Notably, this work introduces the relationship between binocular projection disparity and depth information and it validates the method's effectiveness by using a static spiral wire sample with a known depth relationship. The experimental results unequivocally establish that the proposed method offers high-resolution capabilities in lateral and longitudinal directions. Finally, the X-ray stereo imaging technique is successfully deployed for the three-dimensional characterization of the solidification process in superalloy melts. It effectively overcomes the challenges posed by the in situ heating device that hinder conventional CT imaging, facilitating the successful reconstruction of the orientation relationship of the solidified microstructure in the thickness direction.

Key wordssynchrotron radiation    stereo imaging    depth information    rapid reconstruction    superalloy    melt solidification
收稿日期: 2023-05-08     
ZTFLH:  O434.19  
基金资助:国家自然科学基金项目(12205361);国家重大科研仪器研制项目(11627901)
通讯作者: 肖体乔,tqxiao@sari.ac.cn,主要从事X射线成像研究
作者简介: 王飞翔,男,1991年生,博士
图1  体视成像投影视差与深度关系示意图
图2  静态样品及成像装置
图3  双目投影及其对应视差(A、B 2点深度差为5.28 cm)
图4  体视成像三维重建——不同角度下的三维渲染效果(偏差-6°、双目视角和偏差6°)
图5  镍基高温合金熔体凝固成像实验装置
图6  镍基高温合金在高温炉内连续升温和冷却过程中随时间的形态演变
图7  高温合金熔体凝固组织形貌深度信息的体视成像重建
MethodSpatial resolutionTemporal resolutionImaging informationDevice requirement
Projection imagingSubmicron1 ms2DLow
CTSubmicron5-30 min3DHigh
Stereo imagingMicron1 sStereoModerate
表1  同步辐射X射线成像方法对比
1 Ma Y J, Li R X, Li K, et al. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources [J]. Acta Phys. Sin., 2022, 71: 164205
1 麻永俊, 李睿晅, 李 逵 等. 基于高次谐波X射线光源的三维纳米相干衍射成像技术 [J]. 物理学报, 2022, 71: 164205
2 Nikishkov Y, Kuksenko D, Makeev A. Variable Zoom technique for X-ray computed tomography [J]. NDT & E Int., 2020, 116: 102310
3 Xie H L, Deng B, Du G H, et al. Methodology development and application of X-ray imaging beamline at SSRF [J]. Nucl. Sci. Tech., 2020, 31: 102
4 Yu F C, Wang F X, Li K, et al. Real-time X-ray imaging of mouse cerebral microvessels in vivo using a pixel temporal averaging method [J]. J. Synchrotron. Radiat., 2022, 29: 239
5 Ju X L, Deng B, Li K, et al. Calibrating the linearity between grayscale and element content for X-ray KES imaging of alloys [J]. Nucl. Sci. Tech., 2022, 33: 1
6 Zhang H P, Li K, Wang F X, et al. Megapixel X-ray ghost imaging with a binned detector in the object arm [J]. Chin. Opt. Lett., 2022, 20: 033401
7 Ju X L, Li K, Yu F C, et al. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell [J]. Acta Phys. Sin., 2022, 71: 144101
7 鞠晓璐, 李 可, 余福成 等. 电解池电化学反应过程的运动衬度X射线成像 [J]. 物理学报, 2022, 71: 144101
8 Yu F C, Li K, Wang F X, et al. Double-exposure method for speckle-tracking X-ray phase-contrast microtomography [J]. J. Appl. Phys., 2021, 129: 073101
9 Li K, Gao Y T, Zhang H P, et al. Efficient three-dimensional characterization of C/C composite reinforced with densely distributed fibers via X-ray phase-contrast microtomography [J]. Chin. Opt. Lett., 2021, 19: 073401
10 Wang F X, Zhou P T, Li K, et al. Sensitive imaging of intact microvessels in vivo with synchrotron radiation [J]. IUCrJ, 2020, 7: 793
11 Friis E M, Crane P R, Pedersen K R, et al. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales [J]. Nature, 2007, 450: 549
12 Hu T, Hua W Q, Zhong G J, et al. Nondestructive and quantitative characterization of bulk injection-molded polylactide using SAXS microtomography [J]. Macromolecules, 2020, 53: 6498
13 Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
13 王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
14 He Y F, Wang S G, Shen J, et al. Evolution of micro-pores in a single crystal nickel-based superalloy during 980 oC creep [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1397
15 Hashemi S M, Beheshti S, Gill P R, et al. Accelerated compressed sensing based CT image reconstruction [J]. Comput. Math. Methods Med., 2015, 2015: 161797
16 Wang T, Nakamoto K, Zhang H Y, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction [J]. IEEE Trans. Nucl. Sci., 2017, 64: 2742
17 Godinho J R A, Chellappah K, Collins I, et al. Time-lapse imaging of particle invasion and deposition in porous media using in situ X-ray radiography [J]. J. Petrol. Sci. Eng., 2019, 177: 384
doi: 10.1016/j.petrol.2019.02.061
18 Risse S, Juhl A, Mascotto S, et al. Detailed and direct observation of sulfur crystal evolution during Operando analysis of a Li-S cell with synchrotron imaging [J]. J. Phys. Chem. Lett., 2020, 11: 5674
19 Zhao R B, Hu X D, Jiang Y M, et al. Iterative difference deblurring algorithm for linear computed laminography [J]. Opt. Express, 2021, 29: 30123
doi: 10.1364/OE.435460 pmid: 34614742
20 Garman E F, Weik M. Radiation damage to biological samples: Still a pertinent issue [J]. J. Synchrotron. Radiat., 2021, 28: 1278
doi: 10.1107/S1600577521008845 pmid: 34475277
21 Wang Y B, Jia S S, Wei M G, et al. Research progress on solidification structure of alloys by synchrotron X-ray radiography: A review [J]. J. Magnes. Alloy., 2020, 8: 396
22 Wang T M, Wang K, Zhu J, et al. Applications of synchrotron microradiography in materials science—In situ visualization of the growth of metallic alloy crystals [J]. Physics, 2012, 41: 244
22 王同敏, 王 琨, 朱 晶 等. 同步辐射成像技术在材料科学中的应用——金属合金晶体生长原位可视化 [J]. 物理, 2012, 41: 244
23 Mathiesen R H, Arnberg L, Mo F, et al. Time resolved X-ray imaging of dendritic growth in binary alloys [J]. Phys. Rev. Lett., 1999, 83: 5062
24 Murphy A G, Mirihanage W U, Browne D J, et al. Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiography [J]. Acta Mater., 2015, 95: 83
25 Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy [J]. Acta Mater., 2014, 70: 228
26 Ruvalcaba D, Mathiesen R H, Eskin D G, et al. In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy [J]. Acta Mater., 2007, 55: 4287
27 Bogno A, Nguyen-Thi H, Buffet A, et al. Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid-liquid interface and on solute distribution during the initial transient of solidification [J]. Acta Mater., 2011, 59: 4356
28 Yang M, Xiong S M, Guo Z. Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling [J]. Acta Mater., 2015, 92: 8
29 Qi M F, Kang Y L, Xu Y Z, et al. New technique for preparing A356 alloy semisolid slurry and its rheo-diecast microstructure and properties [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 2451
30 Cardenas-Garcia J F, Yao H G, Zheng S. 3D reconstruction of objects using stereo imaging [J]. Opt. Laser. Eng., 1995, 22: 193
31 Anderson J, Miller C J, Wu X Y, et al. Real-time automated aerial refueling with stereo vision [J]. Inside GNSS, 2021, 16(4): 32
32 Zhao B C, Wen D S, Yang J F, et al. Two bore-sight stereo mapping with single lens, TDI CCD pushing model imaging and compensations of the speed-to-height rate——Chang'e-2 CCD camera [J]. Acta Opt. Sin., 2011, 31: 0900115
32 赵葆常, 汶德胜, 杨建峰 等. 单镜头两视角同轨立体成像、TDI CCD自推扫和速高比补偿——嫦娥二号CCD相机技术 [J]. 光学学报, 2011, 31: 0900115
33 Nam K W, Park J, Kim I Y, et al. Application of stereo-imaging technology to medical field [J]. Healthc. Inform. Res., 2012, 18: 158
doi: 10.4258/hir.2012.18.3.158 pmid: 23115737
34 Ostadi H, Jiang K, Prewett P D. Characterisation of FIB milling yield of metals by SEM stereo imaging technique [J]. Microelectron. Eng., 2009, 86: 1021
35 Bae S Y, Korniski R J, Shearn M, et al. 4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL) [J]. Neurophotonics, 2017, 4: 011008
36 Wang F X, Deng B, Wang Y D, et al. Synchrotron radiation X-ray stereo imaging based on capillary beam splitting [J]. Acta Opt. Sin., 2016, 36: 0834004
36 王飞翔, 邓 彪, 王玉丹 等. 基于毛细管分光的同步辐射X射线立体成像 [J]. 光学学报, 2016, 36: 0834004
37 Barnea D I, Silverman H F. A class of algorithms for fast digital image registration [J]. IEEE Trans. Comput., 1972, C-21: 179
38 Wang S H, You H J, Fu K. BFSIFT: A novel method to find feature matches for SAR image registration [J]. IEEE Geosci. Remote Sens. Lett., 2012, 9: 649
39 Wang R, Zhu Z D. SIFT matching with color invariant characteristics and global context [J]. Opt. Precision Eng., 2015, 23: 295
39 王 睿, 朱正丹. 融合全局-颜色信息的尺度不变特征变换 [J]. 光学精密工程, 2015, 23: 295
40 Li F G, Zhang J, Dong Q, et al. In situ synchrotron X-ray studies of the coupled effects of thermal and solutal supercoolings on the instability of dendrite growth [J]. Mater. Charact., 2015, 109: 9
41 Li F G, Zhang J, Dai Y B, et al. In situ study the effect of refiner on the microstructure evolution of variable cross-section structure by synchrotron X-ray radiography [J]. J. Cryst. Growth, 2015, 428: 1
42 Chen R C, Xu L, Du G H, et al. The dynamic micro computed tomography at SSRF [J]. J. Instrum., 2018, 13: C05006
[1] 何家宝, 王亮, 张朝威, 邹明科, 孟杰, 王新广, 姜肃猛, 周亦胄, 孙晓峰. Al2O3 涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应的影响[J]. 金属学报, 2025, 61(7): 1093-1108.
[2] 李永梅, 谭子昊, 王新广, 陶稀鹏, 杨彦红, 刘纪德, 刘金来, 李金国, 周亦胄, 孙晓峰. 一种低成本第三代单晶高温合金的高温氧化行为[J]. 金属学报, 2025, 61(7): 1049-1059.
[3] 李大禹, 姚志浩, 赵杰, 董建新, 郭婧, 赵宇. FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律[J]. 金属学报, 2025, 61(6): 826-836.
[4] 周一鸣, 韩勇军, 谢光, 郑伟, 肖炎彬, 潘阳, 张健. 一种镍基高温合金的高温HCl腐蚀行为[J]. 金属学报, 2025, 61(5): 770-782.
[5] 李新宇, 白佳铭, 张浩鹏, 李晓鲲, 贾建, 刘常升, 刘建涛, 张义文. 先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为[J]. 金属学报, 2025, 61(5): 757-769.
[6] 张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
[7] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[8] 彭子超, 罗俊鹏, 赵宇, 周磊, 王旭青, 邹金文. FGH96合金静态再结晶过程的显微组织演化[J]. 金属学报, 2025, 61(2): 235-242.
[9] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[10] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[11] 白如圣, 谭毅, 崔弘阳, 宁莉丹, 崔传勇, 王云鹏, 李鹏廷. 电子束熔炼功率对GH4068合金微观组织、偏析和 γ相析出行为的影响[J]. 金属学报, 2024, 60(9): 1189-1199.
[12] 董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
[13] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[14] 刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
[15] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.