Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1637-1646    DOI: 10.11900/0412.1961.2023.00029
  研究论文 本期目录 | 过刊浏览 |
TiAl基合金与GH3039合金摩擦-扩散双重焊焊合区过渡相的形成、结构与原位开裂
杜随更(), 王松林, 胡弘毅
西北工业大学 航空发动机高性能制造工业和信息化部重点实验室 西安 710072
Formation, Structure, and In Situ Cracking of Intermediate Phases in the Friction-Diffusion Double Welding Zone Between TiAl-Based Alloy and GH3039 Alloy
DU Suigeng(), WANG Songlin, HU Hongyi
Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

杜随更, 王松林, 胡弘毅. TiAl基合金与GH3039合金摩擦-扩散双重焊焊合区过渡相的形成、结构与原位开裂[J]. 金属学报, 2024, 60(12): 1637-1646.
Suigeng DU, Songlin WANG, Hongyi HU. Formation, Structure, and In Situ Cracking of Intermediate Phases in the Friction-Diffusion Double Welding Zone Between TiAl-Based Alloy and GH3039 Alloy[J]. Acta Metall Sin, 2024, 60(12): 1637-1646.

全文: PDF(4421 KB)   HTML
摘要: 

发动机用TiAl涡轮与转轴摩擦焊接过程中,在焊合区会产生脆性过渡相,从而影响接头性能。为揭示TiAl基合金与GH3039合金摩擦-扩散双重焊焊合区过渡相的形成规律,探究过渡相的晶体结构和断裂性能,采用在焊接过程中中断焊接的方法,取得了双重焊不同阶段的接头。采用SEM研究了这些接头焊合区过渡相的形貌及其演变规律;利用TEM及配套的原位纳米力学测试系统,研究了过渡相的晶体结构及Al-Ni-Ti三元金属间化合物相的裂纹扩展行为。结果表明,在摩擦焊及其热处理过程中,焊接界面上陆续发生相变形核并初步长大形成新的过渡相:Ni3(Al, Ti)、(Ni, Cr)SS、Al3NiTi2、AlNi2Ti和Ti3Al。随后的扩散焊接过程中的压力和高温促进Ti3Al和Al3NiTi2形成稳定的双相区,促使(Ni, Cr)SS区调幅分解形成相互交错呈柱状分布的fcc结构(Ni)SS和bcc结构(Cr)SS。Al3NiTi2和AlNi2Ti相内弥散分布着极少的α相纯Ti,α-Ti与Al3NiTi2相界处于非共格状态。Al3NiTi2和AlNi2Ti分别具有六方和bcc结构。在原位压缩过程中,Al3NiTi2相内裂纹的形核和扩展,均没有发现明显的塑性变形和位错运动。但观察到裂纹尖端附近晶格面发生微区变形,原子排列从有序结构转变为无序结构。

关键词 TiAl基合金摩擦焊接扩散焊接金属间化合物相原位裂纹    
Abstract

During the friction welding process of TiAl turbine and shaft used in engines, brittle intermediate phases will be generated in the welding zone, which affects the joint performance. To reveal the formation rules of the intermediate phases in the friction-diffusion double welding zone between TiAl-based alloy and GH3039 alloy, and investigate the crystal structure and fracture properties of the intermediate phases, the joints at different stages of the double welding were obtained by interrupting welding during the welding process, respectively. The morphology and evolution law of the intermediate phases of these joints in the welding zones were analyzed using SEM; the crystal structures of the intermediate phases and the crack growth behaviors of Al-Ni-Ti ternary intermetallic compound phases were analyzed using TEM and an in situ nanomechanical testing system.Results showed that during friction welding and heat treatment, phase transformation and nucleation occurred on the welding interface and preliminarily grew up to form the following new intermediate phases: Ni3(Al, Ti), (Ni, Cr)SS, Al3NiTi2, AlNi2Ti, and Ti3Al. In the subsequent diffusion welding process, the pressure and high temperature promoted the formation of a stable two-phase zone between Ti3Al and Al3NiTi2. The amplitude-modulated decomposition in the (Ni, Cr)SS zone formed fcc (Ni)SS and bcc (Cr)SS that are staggered and distributed in a column. Dispersions of pure Ti with the α phase could hardly be found in the Al3NiTi2 and AlNi2Ti phases, and the phase boundary between α-Ti and Al3NiTi2 was in an incoherent state. Furthermore, Al3NiTi2 and AlNi2Ti exhibited hexagonal and bcc structures, respectively. During the in situ compression process, neither obvious plastic deformation nor dislocation movement was observed in the nucleation and propagation of cracks in the Al3NiTi2 phase. However, the lattice surface near the crack tip underwent microdeformation, and the ordered structure of atomic arrangements became disordered.

Key wordsTiAl-based alloy    friction welding    diffusion welding    intermetallic compound phase    in-situ crack
收稿日期: 2023-01-18     
ZTFLH:  TG457.1  
基金资助:国家自然科学基金项目(51675434)
通讯作者: 杜随更,fwcenter@nwpu.edu.cn,主要从事摩擦焊接设备及工艺研究
Corresponding author: DU Suigeng, professor, Tel: 13709212218, E-mail: fwcenter@nwpu.edu.cn
作者简介: 杜随更,男,1963年生,博士,教授
AlloyTiAlNiCrVFeMoNbSiMnC
TiAl49.047.5-1.02.5------
GH30390.61.170.222.6-2.91.20.70.450.230.02
表1  实验材料化学成分 (atomic fraction / %)
图1  TiAl基合金与GH3039合金双重焊接不同阶段焊合区微观组织
图2  Ti、Al、Ni合金元素相关相图:Al-Ni-Ti三元相图700℃等温截面图[14]及Ti-Al二元相图[15]
图3  摩擦-扩散双重焊焊合区微观组织的TEM像(图1g中区域A)
图4  摩擦-扩散双重焊焊合区的TEM像和EDS面扫描
图5  图3中R1区域Al3NiTi2相TEM表征结果
图6  图3中R2区域AlNi2Ti相TEM表征结果
图7  图3中R3区域TEM明场像
图8  图7中位置A处AlNi2Ti相内三角晶界的HRTEM微结构表征
图9  图3中R4区域微小合金相微观形貌的TEM像
图10  图9中位置A处纯Ti和Al3NiTi2相界处SAED花样及HRTEM像
图11  原位压缩裂纹扩展形貌的TEM像
图12  图11中R2-1区域裂纹尖端HRTEM像及裂纹尖端B、C区对应的快速Fourier变换(FFT)像
图13  图11中R2-2区域裂纹尖端HRTEM像及裂纹尖端附近B、C区对应的FFT像
1 Du Z H, Zhang K F, Lu Z, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for γ-TiAl based alloy [J]. Vacuum, 2018, 150: 96
2 Song Y L, Dou Z H, Zhang T A, et al. A novel continuous and controllable method for fabrication of as-cast TiAl alloy [J]. J. Alloys Compd., 2019, 789: 266
3 Song X G, Si X Q, Cao J, et al. Microstructure and joining properties of high Nb-containing TiAl alloy brazed joints [J]. Rare Met. Mater. Eng., 2018, 47: 52
4 Hauschildt K, Stark A, Schell N, et al. The transient liquid phase bonding process of a γ-TiAl alloy with brazing solders containing Fe or Ni [J]. Intermetallics, 2019, 106: 48
doi: 10.1016/j.intermet.2018.12.004
5 Niu G B, Wang D P, Yang Z W, et al. Microstructure and mechanical properties of Al2O3/TiAl joints brazed with B powders reinforced Ag-Cu-Ti based composite fillers [J]. Ceram. Int., 2017, 43: 439
6 Cai X L, Sun D Q, Li H M, et al. Microstructure characteristics and mechanical properties of laser-welded joint of γ-TiAl alloy with pure Ti filler metal [J]. Opt. Laser Technol., 2017, 97: 242
7 Xu X J, Lin J P, Guo J, et al. Friction weldability of a high Nb containing TiAl alloy [J]. Materials, 2019, 12: 3556
8 Dong H G, Yu L Z, Gao H M, et al. Microstructure and mechanical properties of friction welds between TiAl alloy and 40Cr steel rods [J]. Trans. Nonferr. Met. Soc. China, 2014, 24: 3126
9 Park J M, Kim K Y, Kim K K, et al. Effects of insert metal type on interfacial microstructure during dissimilar joining of TiAl alloy to SCM440 by friction welding [J]. Met. Mater. Int., 2018, 24: 626
10 Cai X, Li Q, Li H, et al. Microstructure evolution and formation mechanism of γ-TiAl/Ni-based superalloy laser-welded joint with Ti/V/Cu filler metals [J]. Mater. Lett., 2023, 333: art. no. 133647
11 Du S G, Wang S L, Ding K. A novel method of friction-diffusion welding between TiAl alloy and GH3039 high temperature alloy [J]. J. Manuf. Process., 2020, 56: 688
12 Du S G, Li N, Wang S L. Intermediate phases of TiAl/GH3039 friction welding joint [J]. Rare Met. Mater. Eng., 2021, 50: 3102
13 Du S G, Wang S L, Xu W T. Characterizing micromechanical properties of friction welding interface between TiAl alloy and GH3039 superalloy [J]. Materials, 2020, 13: 2072
14 Huneau B, Rogl P, Zeng K, et al. The ternary system Al-Ni-Ti Part I: Isothermal section at 900oC; Experimental investigation and thermodynamic calculation [J]. Intermetallics, 1999, 7: 1337
15 Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diff., 2006, 27: 255
16 He P, Feng J C, Qian Y Y, et al. Forming mechanism of interface intermetallic compounds for difusion bonding [J]. Trans. China Weld. Inst., 2001, 22(1): 53
16 何 鹏, 冯吉才, 钱乙余 等. 扩散连接接头金属间化合物新相的形成机理 [J]. 焊接学报, 2001, 22(1): 53
17 Tan Y H, Xu H H, Du Y. Isothermal section at 927oC of Cr-Ni-Ti system [J]. Trans. Nonferr. Met. Soc. China, 2007, 17: 711
18 Krendelsberger N, Weitzer F, Du Y, et al. Constitution of the ternary system Cr-Ni-Ti [J]. J. Alloys Compd., 2013, 575: 48
19 Gupta K P. The Cr-Ni-Ti (chromium-nickel-titanium) system-update [J]. J. Phase Equilib., 2003, 24: 86
20 Tetsui T. Effects of brazing filler on properties of brazed joints between TiAl and metallic materials [J]. Intermetallics, 2001, 9: 253
21 Li X D, Ma H T, Dai Z H, et al. First-principles study of coherent interfaces of Laves-phase MgZn2 and stability of thin MgZn2 layers in Mg-Zn alloys [J]. J. Alloys Compd., 2017, 696: 109
22 Fang X D, Li C S, Sun L, et al. Hardness and friction coefficient of fused silica under scratching considering elastic recovery [J]. Ceram. Int., 2020, 46: 8200
23 Song X G, Cao J, Chen H Y, et al. Brazing TiAl intermetallics using TiNi-V eutectic brazing alloy [J]. Mater. Sci. Eng., 2012, A551: 133
24 Song X G, Cao J, Liu Y Z, et al. Brazing high Nb containing TiAl alloy using TiNi-Nb eutectic braze alloy [J]. Intermetallics, 2012, 22: 136
25 Li P, Wang S, Xia Y Q, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45: 59
[1] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[2] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[3] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[4] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[5] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[6] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[7] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[8] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[9] 刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51(3): 281-288.
[10] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[11] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[12] 胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.
[13] 熊超 马颖澈 陈波 刘奎 李依依. γ-TiAl基合金汽车排气阀吸铸充型过程水模拟[J]. 金属学报, 2011, 47(11): 1408-1417.
[14] 杨莉莉 郑立静 肖志霞 闫洁 张虎. 抽拉速率对定向凝固Ti-47Al-2Cr-2Nb-0.8B合金组织的影响[J]. 金属学报, 2010, 46(7): 879-884.
[15] 肖志霞 郑立静 杨莉莉 闫洁 张虎. 温度梯度对定向凝固TiAl基合金片层取向的影响[J]. 金属学报, 2010, 46(10): 1223-1229.