|
|
TiAl基合金与GH3039合金摩擦-扩散双重焊焊合区过渡相的形成、结构与原位开裂 |
杜随更( ), 王松林, 胡弘毅 |
西北工业大学 航空发动机高性能制造工业和信息化部重点实验室 西安 710072 |
|
Formation, Structure, and In Situ Cracking of Intermediate Phases in the Friction-Diffusion Double Welding Zone Between TiAl-Based Alloy and GH3039 Alloy |
DU Suigeng( ), WANG Songlin, HU Hongyi |
Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
杜随更, 王松林, 胡弘毅. TiAl基合金与GH3039合金摩擦-扩散双重焊焊合区过渡相的形成、结构与原位开裂[J]. 金属学报, 2024, 60(12): 1637-1646.
Suigeng DU,
Songlin WANG,
Hongyi HU.
Formation, Structure, and In Situ Cracking of Intermediate Phases in the Friction-Diffusion Double Welding Zone Between TiAl-Based Alloy and GH3039 Alloy[J]. Acta Metall Sin, 2024, 60(12): 1637-1646.
1 |
Du Z H, Zhang K F, Lu Z, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for γ-TiAl based alloy [J]. Vacuum, 2018, 150: 96
|
2 |
Song Y L, Dou Z H, Zhang T A, et al. A novel continuous and controllable method for fabrication of as-cast TiAl alloy [J]. J. Alloys Compd., 2019, 789: 266
|
3 |
Song X G, Si X Q, Cao J, et al. Microstructure and joining properties of high Nb-containing TiAl alloy brazed joints [J]. Rare Met. Mater. Eng., 2018, 47: 52
|
4 |
Hauschildt K, Stark A, Schell N, et al. The transient liquid phase bonding process of a γ-TiAl alloy with brazing solders containing Fe or Ni [J]. Intermetallics, 2019, 106: 48
doi: 10.1016/j.intermet.2018.12.004
|
5 |
Niu G B, Wang D P, Yang Z W, et al. Microstructure and mechanical properties of Al2O3/TiAl joints brazed with B powders reinforced Ag-Cu-Ti based composite fillers [J]. Ceram. Int., 2017, 43: 439
|
6 |
Cai X L, Sun D Q, Li H M, et al. Microstructure characteristics and mechanical properties of laser-welded joint of γ-TiAl alloy with pure Ti filler metal [J]. Opt. Laser Technol., 2017, 97: 242
|
7 |
Xu X J, Lin J P, Guo J, et al. Friction weldability of a high Nb containing TiAl alloy [J]. Materials, 2019, 12: 3556
|
8 |
Dong H G, Yu L Z, Gao H M, et al. Microstructure and mechanical properties of friction welds between TiAl alloy and 40Cr steel rods [J]. Trans. Nonferr. Met. Soc. China, 2014, 24: 3126
|
9 |
Park J M, Kim K Y, Kim K K, et al. Effects of insert metal type on interfacial microstructure during dissimilar joining of TiAl alloy to SCM440 by friction welding [J]. Met. Mater. Int., 2018, 24: 626
|
10 |
Cai X, Li Q, Li H, et al. Microstructure evolution and formation mechanism of γ-TiAl/Ni-based superalloy laser-welded joint with Ti/V/Cu filler metals [J]. Mater. Lett., 2023, 333: art. no. 133647
|
11 |
Du S G, Wang S L, Ding K. A novel method of friction-diffusion welding between TiAl alloy and GH3039 high temperature alloy [J]. J. Manuf. Process., 2020, 56: 688
|
12 |
Du S G, Li N, Wang S L. Intermediate phases of TiAl/GH3039 friction welding joint [J]. Rare Met. Mater. Eng., 2021, 50: 3102
|
13 |
Du S G, Wang S L, Xu W T. Characterizing micromechanical properties of friction welding interface between TiAl alloy and GH3039 superalloy [J]. Materials, 2020, 13: 2072
|
14 |
Huneau B, Rogl P, Zeng K, et al. The ternary system Al-Ni-Ti Part I: Isothermal section at 900oC; Experimental investigation and thermodynamic calculation [J]. Intermetallics, 1999, 7: 1337
|
15 |
Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diff., 2006, 27: 255
|
16 |
He P, Feng J C, Qian Y Y, et al. Forming mechanism of interface intermetallic compounds for difusion bonding [J]. Trans. China Weld. Inst., 2001, 22(1): 53
|
16 |
何 鹏, 冯吉才, 钱乙余 等. 扩散连接接头金属间化合物新相的形成机理 [J]. 焊接学报, 2001, 22(1): 53
|
17 |
Tan Y H, Xu H H, Du Y. Isothermal section at 927oC of Cr-Ni-Ti system [J]. Trans. Nonferr. Met. Soc. China, 2007, 17: 711
|
18 |
Krendelsberger N, Weitzer F, Du Y, et al. Constitution of the ternary system Cr-Ni-Ti [J]. J. Alloys Compd., 2013, 575: 48
|
19 |
Gupta K P. The Cr-Ni-Ti (chromium-nickel-titanium) system-update [J]. J. Phase Equilib., 2003, 24: 86
|
20 |
Tetsui T. Effects of brazing filler on properties of brazed joints between TiAl and metallic materials [J]. Intermetallics, 2001, 9: 253
|
21 |
Li X D, Ma H T, Dai Z H, et al. First-principles study of coherent interfaces of Laves-phase MgZn2 and stability of thin MgZn2 layers in Mg-Zn alloys [J]. J. Alloys Compd., 2017, 696: 109
|
22 |
Fang X D, Li C S, Sun L, et al. Hardness and friction coefficient of fused silica under scratching considering elastic recovery [J]. Ceram. Int., 2020, 46: 8200
|
23 |
Song X G, Cao J, Chen H Y, et al. Brazing TiAl intermetallics using TiNi-V eutectic brazing alloy [J]. Mater. Sci. Eng., 2012, A551: 133
|
24 |
Song X G, Cao J, Liu Y Z, et al. Brazing high Nb containing TiAl alloy using TiNi-Nb eutectic braze alloy [J]. Intermetallics, 2012, 22: 136
|
25 |
Li P, Wang S, Xia Y Q, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45: 59
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|