Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1622-1636    DOI: 10.11900/0412.1961.2022.00490
  研究论文 本期目录 | 过刊浏览 |
热处理调控 α + β 两相钛合金板材的力学及导电性能
张术钱1,2, 马英杰2(), 王倩2, 齐敏1,2, 黄森森2, 雷家峰2, 杨锐2
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment
ZHANG Shuqian1,2, MA Yingjie2(), WANG Qian2, QI Min1,2, HUANG Sensen2, LEI Jiafeng2, YANG Rui2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.
Shuqian ZHANG, Yingjie MA, Qian WANG, Min QI, Sensen HUANG, Jiafeng LEI, Rui YANG. Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment[J]. Acta Metall Sin, 2024, 60(12): 1622-1636.

全文: PDF(5059 KB)   HTML
摘要: 

热处理可有效调节两相钛合金的强塑性关系,但是热处理对其导电性能的影响还不明确。本工作研究了退火温度对Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材显微组织、力学性能及导电性能的影响。结果表明,轧制钛合金板材形成了沿轧向(RD)排列的条带状组织,板材织构类型为T型织构。板材在两相区退火后,双态组织中的αs/β (αs为次生α相)界面强化导致板材屈服强度升高,延伸率下降。屈服强度呈现明显各向异性,沿板材横向(TD)的屈服强度更高。而在单相区退火后,αs相明显粗化,且有晶界α相(αGB)相析出,板材延伸率急剧下降。αs相变体选择诱发形成了R型织构和c轴方向沿ND向RD偏转20°~30°的新织构,此时沿板材TD的屈服强度仍高于沿RD的屈服强度,屈服强度各向异性受织构的影响减弱。电阻率分析结果表明,钛合金板材由于条带状组织及T型织构的形成,使沿板材RD的电阻率更高。而条带状组织消失及R型织构体积分数增加,使电阻率各向异性减弱。

关键词 α + β钛合金板材退火处理显微组织各向异性拉伸性能电阻率    
Abstract

Eddy current loss, which produces Joule heat and reduces transmission efficiency, is inevitable when the magnetic coupling is running. Magnetic couplings with high electrical resistivity alloys, such as titanium alloy, have been proven to be effective in suppressing the eddy currents. The Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was a α + β titanium alloy for marine engineering with high specific strength and electrical resistivity, which was used in magnetic couplings to suppress the eddy currents. In this study, the effect of annealing temperature on the microstructure, mechanical properties, and electrical conductivity of the Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was investigated. The results revealed that the band structure was arranged along the rolling direction (RD), and the as-rolled titanium alloy sheet showed a typical T-type texture with the c-axis of the α phase approximately parallel to the transverse direction (TD). A considerable increase in tensile strength and decrease in elongation after αβ region (850-920oC) annealing was thought to result from the strengthening of secondary α/β interfaces in the bimodal structure. Simultaneously, the α phase showed both T-type and R-type textures, which also resulted in higher yield strength along the TD of the sheet. Additionally, when the sheet suffered a β phase region annealing (950-1000oC), the elongation immediately decreased due to the coarseness and precipitation of the secondary α and grain boundary α phases, respectively. Meanwhile, the annealed sheet showed an R-type and a new B-type texture components with basal poles rotated 20°-30° away from the normal direction (ND) toward the RD under the influence of variant selection of secondary α phase. However, the yield strength along the TD was still higher than that in the RD, indicating that the effect of texture on yield strength anisotropy was reduced. Finally, the electrical resistivity analysis of the titanium alloy sheet indicated that the electrical resistivity along the RD of the sheet was higher when the band structure was formed and the c-axis of the α phase was concentrated in the TD. However, the disappearance of the band structure and the increase in the volume fraction of the R-type texture will reduce the anisotropy of electrical resistivity.

Key wordsα + β titanium alloy sheet    annealing treatment    microstructure    anisotropy    tensile property    electrical resistivity
收稿日期: 2022-10-07     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2021YFC2801801);国家自然科学基金项目(51871225)
通讯作者: 马英杰,yjma@imr.ac.cn,主要从事钛合金强韧化机制的研究
Corresponding author: MA Yingjie, professor, Tel: 13840026329, E-mail: yjma@imr.ac.cn
作者简介: 张术钱,男,1998年生,硕士
图1  Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr板材试样及取样示意图
图2  Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材显微组织的SEM像
图3  Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材轧向-法向(RD-ND)面α相的取向成像图以及α相和β相的极图
图4  不同温度退火空冷后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材显微组织的SEM像
图5  初生α相(αp相)和β转变组织(βt相)的体积分数以及αp相和次生α相(αs相)尺寸随退火温度的变化
图6  利用XRD测得的不同温度退火处理后α相的极图
图7  利用EBSD测得的不同温度退火后α相的极图
图8  920℃退火处理后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材组织的EBSD分析
图9  1000℃退火态Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材的织构分析
图10  不同温度退火后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材的室温拉伸性能
图11  沿Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材轧向(RD)和横向(TD) α相不同滑移系的Schmidt因子分布
图12  Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材经不同温度退火后α相RD和TD的反极图以及基面和柱面滑移的等Schmidt因子分布图
图13  Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材RD和TD的电阻率以及α织构组分体积分数随退火温度的变化
图14  织构类型对Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材不同方向电子散射的影响
1 Wang L, Jia Z Y, Liu X, et al. The key characteristics of the permanent magnet thruster for underwater vehicle [J]. J. Harbin Univ. Sci. Technol., 2020, 25(4): 33
1 王 雷, 贾振元, 刘 鑫 等. 水下机器人永磁推进器关键特性 [J]. 哈尔滨理工大学学报, 2020, 25(4): 33
2 Gong N N, Zhang B, Li J B. Calculation of eddy losses power of magnetic transmission isolation sleeve [J]. Mech. Eng. Autom., 2018, (6): 200
2 宫娜娜, 张 波, 李景彬. 磁力传动隔离套涡流损失功率计算 [J]. 机械工程与自动化, 2018, (6): 200
3 Kong F Y, Zhang Y, Shao F, et al. Eddy current loss of containment shell of high-speed magnetic driving pump [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(1): 61
3 孔繁余, 张 勇, 邵 飞 等. 高速磁力泵隔离套的磁涡流损失 [J]. 农业工程学报, 2012, 28(1): 61
4 Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
5 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
5 杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
6 Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
6 吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
7 Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55: 183
8 Chen Z Q, Xu L J, Liang Z Q, et al. Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe-0.1B-0.1C [J]. Mater. Sci. Eng., 2021, A823: 141728
9 Xu W J, Tan Y Q, Gong L H, et al. Effect of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2932
9 徐戊矫, 谭玉全, 龚利华 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2932
10 Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater. Des., 2015, 83: 499
11 Wang K, Zhao Y Q, Jia W J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 552
11 王 可, 赵永庆, 贾蔚菊 等. 热处理对Ti90钛合金显微组织及性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 552
12 Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
12 李文渊, 刘建荣, 陈志勇 等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
13 Cheng C, Feng Y, Chen Z Y, et al. Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet [J]. Mater. Sci. Eng., 2021, A826: 141971
14 Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
15 Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V [J]. Acta Mater., 2004, 52: 5215
16 Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
17 Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
18 Zheng G M, Li L, Mao X N, et al. Variant selection during titanium alloy BCC↔HCP phase transformation and its effect on crystal orientation [J]. Mater. Rep., 2019, 33: 2910
18 郑国明, 李 磊, 毛小南 等. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响 [J]. 材料导报, 2019, 33: 2910
19 Obasi G C, Birosca S, da Fonseca J Q, et al. Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
20 Gey N, Humbert M. Characterization of the variant selection occurring during the αβα phase transformations of a cold rolled titanium sheet [J]. Acta Mater., 2002, 50: 277
21 Zhu Z S, Gu J L, Liu R Y, et al. Variant selection and its effect on phase transformation textures in cold rolled titanium sheet [J]. Mater. Sci. Eng., 2000, A280: 199
22 Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin: Springer-Verlag, 2007: 247
23 Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
24 Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall. Sin., 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
24 侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系: 晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
25 Li R, Zuo X W, Wang E G. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy [J]. Acta Phys. Sin., 2017, 66: 027401
25 李 蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度 [J]. 物理学报, 2017, 66: 027401
26 Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys [J]. J. Alloys Compd., 2014, 608: 19
27 Yuan J W, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy [J]. Mater. Des., 2012, 40: 257
28 Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH Verlag GmbH, 2003: 24
29 Liu S L, Lu Y F, Huang X M, et al. Research situation on the effect of manufacturing process and heat treatment on the titanium alloy sheet texture [J]. Metall. Eng., 2015, 2: 144
29 刘松良, 卢影锋, 黄先明 等. 加工工艺及热处理对钛合金板材织构影响的研究现状 [J]. 冶金工程, 2015, 2: 144
30 Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
31 Zhao Z B, Wang Q J, Liu J R, et al. Texture of Ti60 alloy precision bars and its effect on tensile properties [J]. Acta Metall. Sin., 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
31 赵子博, 王清江, 刘建荣 等. Ti60合金棒材中的织构及其对拉伸性能的影响 [J]. 金属学报, 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
32 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 197
32 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 197
33 Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
34 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
35 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
35 黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
36 Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
37 Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure [J]. Acta Mater., 2012, 60: 2647
38 Zhou Y, Wang K, Xin R L, et al. Effect of special primary α grain on variant selection of secondary α phase in a near-α titanium alloy [J]. Mater. Lett., 2020, 271: 127766
39 Obasi G C, Moat R J, Leo Prakash D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 7169
40 Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
41 Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
42 Yang Y, Lu Y F, Ge P, et al. Variant selection of βα phase transformation in titanium alloys [J]. Mater. Sci., 2014, 4: 197
43 Beladi H, Chao Q, Rohrer G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy [J]. Acta Mater., 2014, 80: 478
44 Lei L, Zhao Y Q, Wu C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99: 101
doi: 10.1016/j.jmst.2021.04.069
45 Zhu Z S, Gu J L, Chen N P. Variant selection in αβα phase transformation of cold rolled titanium sheet [J]. Scr. Mater., 1996, 34: 1281
46 Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy [J]. J. Alloys Compd., 2013, 550: 23
47 Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate [J]. Acta Metall. Sin., 2020, 56: 193
47 程 超, 陈志勇, 秦绪山 等. TA32钛合金厚板的微观组织、织构与力学性能 [J]. 金属学报, 2020, 56: 193
48 Luo Y M, Liu J X, Li S K, et al. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2692
48 骆雨萌, 刘金旭, 李树奎 等. 热轧TC4钛合金力学性能各向异性及影响因素分析 [J]. 稀有金属材料与工程, 2014, 43: 2692
49 Wu D M. Fundamentals of Solid State Physics [M]. Beijing: Higher Education Press, 2007: 84
49 吴代鸣. 固体物理基础 [M]. 北京: 高等教育出版社, 2007: 84
[1] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[2] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[4] 王峰, 白盛巍, 王志, 杜旭东, 周乐, 毛萍莉, 魏子淇, 李瑾伟. Mg-Zn系合金热裂行为的研究进展[J]. 金属学报, 2024, 60(6): 743-759.
[5] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[6] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[7] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[8] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[9] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[10] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[11] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[12] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[13] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[14] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[15] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.