|
|
热处理调控 α + β 两相钛合金板材的力学及导电性能 |
张术钱1,2, 马英杰2( ), 王倩2, 齐敏1,2, 黄森森2, 雷家峰2, 杨锐2 |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment |
ZHANG Shuqian1,2, MA Yingjie2( ), WANG Qian2, QI Min1,2, HUANG Sensen2, LEI Jiafeng2, YANG Rui2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.
Shuqian ZHANG,
Yingjie MA,
Qian WANG,
Min QI,
Sensen HUANG,
Jiafeng LEI,
Rui YANG.
Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment[J]. Acta Metall Sin, 2024, 60(12): 1622-1636.
1 |
Wang L, Jia Z Y, Liu X, et al. The key characteristics of the permanent magnet thruster for underwater vehicle [J]. J. Harbin Univ. Sci. Technol., 2020, 25(4): 33
|
1 |
王 雷, 贾振元, 刘 鑫 等. 水下机器人永磁推进器关键特性 [J]. 哈尔滨理工大学学报, 2020, 25(4): 33
|
2 |
Gong N N, Zhang B, Li J B. Calculation of eddy losses power of magnetic transmission isolation sleeve [J]. Mech. Eng. Autom., 2018, (6): 200
|
2 |
宫娜娜, 张 波, 李景彬. 磁力传动隔离套涡流损失功率计算 [J]. 机械工程与自动化, 2018, (6): 200
|
3 |
Kong F Y, Zhang Y, Shao F, et al. Eddy current loss of containment shell of high-speed magnetic driving pump [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(1): 61
|
3 |
孔繁余, 张 勇, 邵 飞 等. 高速磁力泵隔离套的磁涡流损失 [J]. 农业工程学报, 2012, 28(1): 61
|
4 |
Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
|
5 |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
|
5 |
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
|
6 |
Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
|
6 |
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
|
7 |
Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55: 183
|
8 |
Chen Z Q, Xu L J, Liang Z Q, et al. Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe-0.1B-0.1C [J]. Mater. Sci. Eng., 2021, A823: 141728
|
9 |
Xu W J, Tan Y Q, Gong L H, et al. Effect of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2932
|
9 |
徐戊矫, 谭玉全, 龚利华 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2932
|
10 |
Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater. Des., 2015, 83: 499
|
11 |
Wang K, Zhao Y Q, Jia W J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 552
|
11 |
王 可, 赵永庆, 贾蔚菊 等. 热处理对Ti90钛合金显微组织及性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 552
|
12 |
Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
|
12 |
李文渊, 刘建荣, 陈志勇 等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
|
13 |
Cheng C, Feng Y, Chen Z Y, et al. Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet [J]. Mater. Sci. Eng., 2021, A826: 141971
|
14 |
Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
|
15 |
Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V [J]. Acta Mater., 2004, 52: 5215
|
16 |
Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
|
17 |
Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
|
18 |
Zheng G M, Li L, Mao X N, et al. Variant selection during titanium alloy BCC↔HCP phase transformation and its effect on crystal orientation [J]. Mater. Rep., 2019, 33: 2910
|
18 |
郑国明, 李 磊, 毛小南 等. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响 [J]. 材料导报, 2019, 33: 2910
|
19 |
Obasi G C, Birosca S, da Fonseca J Q, et al. Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
|
20 |
Gey N, Humbert M. Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet [J]. Acta Mater., 2002, 50: 277
|
21 |
Zhu Z S, Gu J L, Liu R Y, et al. Variant selection and its effect on phase transformation textures in cold rolled titanium sheet [J]. Mater. Sci. Eng., 2000, A280: 199
|
22 |
Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin: Springer-Verlag, 2007: 247
|
23 |
Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
|
24 |
Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall. Sin., 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
|
24 |
侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系: 晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
|
25 |
Li R, Zuo X W, Wang E G. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy [J]. Acta Phys. Sin., 2017, 66: 027401
|
25 |
李 蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度 [J]. 物理学报, 2017, 66: 027401
|
26 |
Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys [J]. J. Alloys Compd., 2014, 608: 19
|
27 |
Yuan J W, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy [J]. Mater. Des., 2012, 40: 257
|
28 |
Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH Verlag GmbH, 2003: 24
|
29 |
Liu S L, Lu Y F, Huang X M, et al. Research situation on the effect of manufacturing process and heat treatment on the titanium alloy sheet texture [J]. Metall. Eng., 2015, 2: 144
|
29 |
刘松良, 卢影锋, 黄先明 等. 加工工艺及热处理对钛合金板材织构影响的研究现状 [J]. 冶金工程, 2015, 2: 144
|
30 |
Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
|
31 |
Zhao Z B, Wang Q J, Liu J R, et al. Texture of Ti60 alloy precision bars and its effect on tensile properties [J]. Acta Metall. Sin., 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
|
31 |
赵子博, 王清江, 刘建荣 等. Ti60合金棒材中的织构及其对拉伸性能的影响 [J]. 金属学报, 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
|
32 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 197
|
32 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 197
|
33 |
Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
|
34 |
Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
|
35 |
Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
|
35 |
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
|
36 |
Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
|
37 |
Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure [J]. Acta Mater., 2012, 60: 2647
|
38 |
Zhou Y, Wang K, Xin R L, et al. Effect of special primary α grain on variant selection of secondary α phase in a near-α titanium alloy [J]. Mater. Lett., 2020, 271: 127766
|
39 |
Obasi G C, Moat R J, Leo Prakash D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 7169
|
40 |
Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
|
41 |
Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during β→α phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
|
42 |
Yang Y, Lu Y F, Ge P, et al. Variant selection of β→α phase transformation in titanium alloys [J]. Mater. Sci., 2014, 4: 197
|
43 |
Beladi H, Chao Q, Rohrer G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy [J]. Acta Mater., 2014, 80: 478
|
44 |
Lei L, Zhao Y Q, Wu C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99: 101
doi: 10.1016/j.jmst.2021.04.069
|
45 |
Zhu Z S, Gu J L, Chen N P. Variant selection in α→β→α phase transformation of cold rolled titanium sheet [J]. Scr. Mater., 1996, 34: 1281
|
46 |
Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy [J]. J. Alloys Compd., 2013, 550: 23
|
47 |
Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate [J]. Acta Metall. Sin., 2020, 56: 193
|
47 |
程 超, 陈志勇, 秦绪山 等. TA32钛合金厚板的微观组织、织构与力学性能 [J]. 金属学报, 2020, 56: 193
|
48 |
Luo Y M, Liu J X, Li S K, et al. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2692
|
48 |
骆雨萌, 刘金旭, 李树奎 等. 热轧TC4钛合金力学性能各向异性及影响因素分析 [J]. 稀有金属材料与工程, 2014, 43: 2692
|
49 |
Wu D M. Fundamentals of Solid State Physics [M]. Beijing: Higher Education Press, 2007: 84
|
49 |
吴代鸣. 固体物理基础 [M]. 北京: 高等教育出版社, 2007: 84
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|