Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 641-648    DOI: 10.3724/SP.J.1037.2012.00762
  论文 本期目录 | 过刊浏览 |
Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究
刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐
中国科学院金属研究所, 沈阳 110016
MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION
LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. Acta Metall Sin, 2013, 49(6): 641-648.

全文: PDF(4305 KB)  
摘要: 

采用包套近等温热挤压得到Ti-45.5Al-2Cr-2Nb-0.15B合金棒材. 结合有限元数值模拟,研究了挤压变形组织的形成及各部位差异, 获得了棒材不同部位组织与室温拉伸性能的关系.结果表明, 热挤压变形有效细化了片层晶粒尺寸, 棒材轴向各部位组织和室温断后延伸率较为均匀,但径向芯部与边缘差别较大, 且这种径向组织性能差异未能通过后续α单相固溶热处理消除.挤压棒材各部位片层晶粒尺寸随有效应变的增大而减小, 本工作所得挤压棒材中有效应变大于2.25处具有细小均匀组织,而组织类型差异主要由变形过程中的坯料温度变化所致, 其中尾部边缘坯料温度受低温模具激冷作用而迅速下降,相应亚稳α相分解析出γ片层并在后续变形中失稳弯曲而形成界面扭曲的残余片层晶粒.各部位的断后延伸率随片层晶粒尺寸的增大而减小,但芯部断后延伸率较低主要归因于组织中存在片层界面与挤压方向接近垂直的片层晶粒.

关键词 γ-TiAl基合金包套热挤压有限元数值模拟全片层组织拉伸性能    
Abstract

The near isothermal canned hot extrusion at a temperature close to α transus temperature was used to fabricate Ti-45.5Al-2Cr-2Nb-0.15B alloy rod. Microstructures and tensile properties of samples taken from different locations of the extrudate were compared with each other, and the formation mechanism of extrusion microstructure was investigated in combination with the finite element simulation. It was found that lamellar grains were significantly refined by hot extrusion. Microstructure and tensile elongation were homogeneous along the axial direction of extruded rods, but heterogeneous along the radial direction. The center of rods with coarse fully-lamellar microstructure had low tensile elongation, and the edge of rods with fine near lamellar microstructure had high tensile elongation. Such heterogeneities could not be eliminated in subsequent α solid solution treatment. Lamellar grain size decreased with increasing effective strain. There existed the refined homogeneous microstructure in the regions with effective strain larger than 2.25. The difference of microstructure type was mainly due to different temperatures of different parts of rods during extrusion process. In the edge of rod tails, the γ phase lamellar structure precipitated from α phase was formed due to the chilling effect caused by contacting with the cold die, then the lamellar structure with tortuous boundary was formed in subsequent deformation. Tensile elongation was found to decrease with increasing lamellar grain size, but the poor tensile elongation in the center was mainly attributed to the existence of lamellar grains which lamellar boundaries were nearly perpendicular to the extrusion direction.

Key wordsγ-TiAl base alloy    canned hot extrusion    finite element simulation    fully-lamellar microstructure    tensile property
收稿日期: 2012-12-24     
作者简介: 刘仁慈, 男, 1983年生, 博士生

[1] Dimiduk D M.  Mater Sci Eng, 1999; A263: 281

[2] Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U,Mullauer J, Oehring M, Paul J D H.  Adv Eng Mater, 2000; 2: 699
[3] Appel F, Oehring M, Paul J D H, Klinkenberg C, Carneiro T. Intermetallics, 2004; 12: 791
[4] Kim Y W.  Acta Metall Mater, 1992; 40: 1121
[5] Koeppe C, Bartels A, Seeger J, Mecking H.  Metall Mater Trans, 1993;24A: 1795
[6] Seetharaman V, Malas J C, Lombard C M. In: Johnson L A, Pope D P,Stiegler J O eds.,  High-Temperature Ordered Intermetallic Alloys IV. Boston,MA: MRS, 1991: 889
[7] Semiatin S L, Seetharaman V, Jain V K.  Metall Mater Trans, 1994; 25A:2753
[8] Semiatin S L. In: Kim Y W, Wagner R, Yamaguchi M eds.,  Gamma Titanium Aluminides 1995.Las Vegas, NV: TMS, 1995: 509
[9] Oehring M, Lorenz U, Niefanger R, Christoph U, Appel F, Wagner R,Clemens H, Eberhardt N. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides 1999. San Diego, CA: TMS, 1999: 439
[10] Xie J X, Liu J A.  Metal Extrusion: Fundamental and Technology.Beijing: Metallurgical Industry Press, 2002: 8
 (谢建新, 刘静安. 金属挤压理论与技术. 北京: 冶金工业出版社, 2002: 8)
[11] Liu C T, Schneibel J H, Maziasz P J, Wright J L, Easton D S. Intermetallics, 1996; 4: 429
[12] Goetz R, Jain V, Lombard C.  J Mater Process Technol, 1992; 35: 37
[13] Liu D.  PhD Dissertation, Institute of Metal Research, Chineses Academy of Sciences, Shenyang, 2007
 (刘冬. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[14] Cui Y Y.  PhD Dissertation, Institute of Metal Research, Chineses Academy of Sciences,Shenyang, 2004
 (崔玉友. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[15] Bai C G.  PhD Dissertation, Institute of Metal Research, Chineses Academy of Sciences,Shenyang, 2007
 (柏春光. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[16] Goetz R L, Semiatin S L.  J Mater Eng Perfor, 2001; 10: 710
[17] Seetharaman V, Semiatin S L.  Metall Mater Trans, 1996; 27A: 1987
[18] Kim Y W, Dimiduk D M. In: Hemker K J, Dimiduk D M, Clemens D, Darolio
R, Inui H, Larson J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics 2001. Wyoming: TMS, 2001: 625
[19] Semiatin S, Dimiduk D M, Ashbee K, Seetharaman V.  Metall Mater Trans, 1998; 29A: 7
[20] Maziasz P, Liu C T.  Metall Mater Trans, 1998; 29A: 105
[21] Kim Y W.  Mater Sci Eng, 1995; A192-193: 519
[22] Fuchs G E. In: Kim Y W, Wagner R, Yamaguchi M eds.,  Gamma Titanium Aluminides 1995. Las Vegas, NV:TMS, 1995: 563
[23] Fuchs G E.  Metall Mater Trans, 1998; 29A: 27
[24] Inui H, Oh M H, Nakamura A, Yamaguchi M.  Acta Metall Mater, 1992; 40: 3095
[25] Umakoshi Y, Nakano T.  Acta Metall Mater, 1993; 41: 1155
[26] Leyens C, Peters M, translated by Chen Z H.  Titanium and Titanium Alloy. Beijing:Chemical Industry Press, 2005: 88
 (Leyens C, Peters M著, 陈振华 译. 钛与钛合金. 北京: 化学工业出版社, 2005: 88)
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[4] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[5] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[6] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[7] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[8] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[9] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[10] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[11] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[12] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[13] 杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.
[14] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[15] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.