Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 647-656    DOI: 10.11900/0412.1961.2017.00516
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
籽晶法定向凝固TiAl基合金片层取向控制
苏彦庆(), 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志
哈尔滨工业大学金属精密热加工国家级重点实验室 哈尔滨 150001
The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys
Yanqing SU(), Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(8727 KB)   HTML
摘要: 

TiAl基合金是一种在航空航天等领域极具应用前景的轻质高温结构材料,通过控制TiAl基合金中片层取向可显著提升合金在单向受力条件下的综合力学性能。本文介绍了籽晶法定向凝固技术在TiAl基合金片层取向控制的最新进展,回顾了传统Ti-43Al-3Si籽晶法所面临的问题,重点总结了近年来新发展的二次定向凝固法、原位自籽晶定向凝固法、准籽晶定向凝固技术以及高熔点金属籽晶定向凝固技术,这些技术有利于促进籽晶法定向凝固控制TiAl基合金片层取向的工程化进展。但TiAl基合金中不同相的实际生长取向的持续稳定需要籽晶引晶与动力学条件的相结合才能得以实现,因此,新型籽晶技术与定向凝固工艺条件的互相结合将是未来籽晶法的发展趋势。

关键词 TiAl基合金定向凝固籽晶法片层取向控制    
Abstract

TiAl-based alloys will be potentially used as light-weight high temperature structural materials in aerospace industry. The comprehensive mechanical properties of TiAl-based alloys can be improved significantly when lamellar orientation is aligned parallel to principle stress. In this paper, the development of seeding technique in directionally solidified TiAl-based alloys is reviewed, including the traditional Ti-43Al-3Si seeding method and some novel seeding methods. Those methods mainly include the second directional solidification method, self-seeding technique, quasi-seeding technique and high-melting metal seeding technique. Those newly developed methods will promote the engineering applications of the lamellar structure controlling technology for TiAl-based alloys. However, the stable growth of different leading phase in its designed direction depends on the coupling of the seed and growth dynamic parameteres. How to discover the influence of the growth dynamic parameteres on the designed growth direction is a key problem.

Key wordsTiAl-based alloy    directional solidification    seeding technique    lamellar orientation controlling
收稿日期: 2017-12-04     
ZTFLH:  TG146.23  
基金资助:资助项目 国家自然科学基金项目Nos.51425402和51331005,国家重点研发计划项目No.2017YFA0403804及长江学者奖励计划项目No.T2014227
作者简介:

作者简介 苏彦庆,男,1969年生,教授,博士

引用本文:

苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
Yanqing SU, Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU. The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys. Acta Metall Sin, 2018, 54(5): 647-656.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00516      或      https://www.ams.org.cn/CN/Y2018/V54/I5/647

图1  采用电磁约束定向凝固技术,以Ti-43Al-3Si为籽晶定向Ti-47Al二元合金宏观组织[17]
图2  生长速率为36 mm/h时不同凝固阶段Ti-47Al试样的纵截面组织[20]
图3  Ti-43Al-3Si合金经不同时间热稳定化处理后糊状区纵向宏观组织[22]
图4  以Ti-43Al-3Si合金为籽晶定向凝固Ti-47Al-1.0W-0.5Si合金不同高度的纵截面微观组织[22]
图5  二次定向凝固Ti-46Al-5Nb合金宏观组织图[26]
图6  Ti-46Al-5Nb合金二次定向凝固过程初始生长模式图[26]
图7  冷坩埚原位籽晶定向凝固示意图[29]
图8  采用水冷铜坩埚制备的试样纵剖面宏观组织[30]
图9  自籽晶法定向凝固过程示意图[31]
图10  准籽晶法定向凝固Ti-48Al-2Cr-2Nb合金过程中不同凝固区域内微观组织[17]
图11  Ti-Al二元相图和快速加热过程中的组织演化示意图[17]
图12  以Ti为籽晶定向凝固Ti-47Al-0.5W-0.5Si合金铸锭及成分过渡界面[40]
图13  以Ti为籽晶定向凝固Ti-47Al-0.5W-0.5Si合金微观组织演化示意图[40]
[1] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129)
[2] Janschek P.Wrought TiAl blades[J]. Mater. Today: Proc., 2015, 2(suppl.1): S92
[3] Gupta R K, Pant B, Sinha P P.Theory and practice of γ +α2 Ti aluminide: A review[J]. Trans. Indian Inst. Met., 2014, 67: 143
[4] Clemens H, Mayer S.Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties[J]. Mater. High Temp., 2016, 33: 560
[5] Fan J L, Liu J X, Wu S, et al.Microstructure formation and interface characteristics of directionally solidified TiAl-Si alloys in alumina crucibles with a new Y2O3 skull-aided technology[J]. Sci. Rep., 2017, 7: 45198
[6] Chen G L, Lin J P.Physical Metallurgy of Ordered Intermetallics Structure Materials [M]. Beijing: Metallurgical Industry Press, 1999: 35(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础 [M]. 北京: 冶金工业出版社, 1999: 35)
[7] Yamaguchi M, Johnson D R, Lee H N, et al.Directional solidification of TiAl-base alloys[J]. Intermetallics, 2000, 8: 511
[8] Chen G, Peng Y B, Zheng G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater., 2016, 15: 876
[9] Peng Y B, Chen F, Wang M Z, et al.Relationship between mechanical properties and lamellar orientation of PST crystals in Ti- 45Al- 8Nb alloys[J]. Acta Metall. Sin., 2013, 49: 1457(彭英博, 陈锋, 王敏智等. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J]. 金属学报, 2013, 49: 1457)
[10] Johnson D R, Inui H, Muto S, et al.Microstructural development during directional solidification of α-seeded TiAl alloys[J]. Acta Mater., 2006, 54: 1077
[11] Kim S E, Lee Y T, Oh M H, et al. Directional solidification of TiAl base alloys using a polycrystalline seed [J]. Mater. Sci. Eng., 2002,A329-331: 25
[12] Su Y Q, Liu T, Li X Z, et al.Lamellar orientation control in directionally solidified TiAl intermetallics[J]. China Foundry, 2014, 11: 219
[13] Luo W Z, Shen J, Min Z X, et al.Lamellar orientation control in γ-TiAl alloys by directional solidification[J]. Rare Met. Mater. Eng., 2009, 38: 1864(罗文忠, 沈军, 闵志先等. γ-TiAl合金中片层组织取向的控制[J]. 稀有金属材料与工程, 2009, 38: 1864)=
[14] Luo W Z, Shen J, Li Q L, et al.Effects of growth rate on microstructure of directionally solidified Ti-43Al-3Si alloy with a seed technique[J]. Acta Metall. Sin., 2006, 42: 1238(罗文忠, 沈军, 李庆林等. 抽拉速率对Ti-43Al-3Si合金籽晶法定向凝固组织的影响[J]. 金属学报, 2006, 42: 1238)
[15] Johnson D R, Inui H, Yamaguch M.Directional solidification and microstructural control of the TiAl/Ti3Al lamellar microstructure in TiAl-Si alloys[J]. Acta Mater., 1996, 44: 2523
[16] Johnson D R, Masuda Y, Inui H, et al.Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material[J]. Acta Mater., 1997, 45: 2523
[17] Du Y J.Frabication of lamellar microstructure of TiAl alloys by electromagnetic confinement and its properties [D]. Xi'an: Northwestern Polytechnical University, 2015(杜玉俊. TiAl合金定向片层组织电磁约束制备及力学性能 [D]. 西安: 西北工业大学, 2015)
[18] Du Y J, Shen J, Xiong Y L, et al.Lamellar microstructure alignment and fracture toughness in Ti-47Al alloy by electromagnetic confinement and directional solidification[J]. Mater. Sci. Eng., 2015, A621: 94
[19] Luo W Z, Shen J, Min Z X, et al.Lamellar orientation control of TiAl alloys under high temperature gradient with a Ti-43Al-3Si seed[J]. J. Cryst. Growth, 2008, 310: 5441
[20] Luo W Z, Shen J, Li Q L, et al.Preparation of aligned lamellar microstructure in TiAl alloys by directional solidification with a seed technique[J]. Acta Metall. Sin, 2007, 43: 1287(罗文忠, 沈军, 李庆林等. TiAl合金定向全片层组织的籽晶法制备[J]. 金属学报, 2007, 43: 1287)
[21] Luo W Z, Shen J, Li Q L, et al.Microstructural evolution of Ti-47Al alloy during directional solidification by seeding method[J]. Acta Metall. Sin., 2007, 43: 897(罗文忠, 沈军, 李庆林等. Ti-47Al合金籽晶法定向凝固过程中的组织演化[J]. 金属学报, 2007, 43: 897)
[22] Liu T.Initial mushy zone evolution and microstructure controlling during directional solidification in TiAl-based alloys [D]. Harbin: Harbin Institute of Technology, 2017(刘桐. 定向凝固TiAl基合金初始糊状区演变及微观组织控制 [D]. 哈尔滨: 哈尔滨工业大学, 2017)
[23] Ding X F, Lin J P, Zhang L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J]. Scr. Mater., 2011, 65: 61
[24] Zhang L W, Lin J P, Ding X F, et al.Crystal orientation control in TiAl-Nb alloys through a double directional solidification process[J]. J. Alloys Compd., 2016, 656: 720
[25] Ding X F, Zhang L Q, Lin J P, et al.Microstructure control and mechanical properties of directionally solidified TiAl-Nb alloys[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 747
[26] Ding X F, Lin J P, Zhang L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J]. Acta Mater., 2012, 60: 498
[27] Ding X F, Lin J P, Zhang L Q, et al.A closely-complete peritectic transformation during directional solidification of a Ti-45Al-8.5Nb alloy[J]. Intermetallics, 2011, 19: 1115
[28] Zhang C J, Xu D M, Fu H Z, et al.To eliminate the composition transient zone in directional solidification of TiAl alloys[J]. J. Cryst. Growth, 2008, 310: 3604
[29] Zhang C J, Fu H Z, Xu D M, et al.Feasibility of integrated seed making and directional solidification of TiAl alloy using cold crucible[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 330
[30] Zhang C J.Lamellar orientation control of directionally solidified γ-TiAl-based alloys [D]. Harbin: Harbin Institute of Technology, 2008(张成军. 定向凝固γ-TiAl基合金片层取向控制 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[31] Fan J L.Microstructure evolution and lamellae orientation control of directionally solidified Ti-46Al-0.5W-0.5Si alloy [D]. Harbin: Harbin Institute of Technology, 2012(樊江磊. 定向凝固Ti-46Al-0.5W-0.5Si合金组织演化及层片取向控制 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[32] Liu D M, Li X Z, Su Y Q, et al.Microstructure evolution in directionally solidified Ti-(50, 52)at%Al alloys[J]. Intermetallics, 2011, 19: 175
[33] Liu G H, Wang Z D, Li X Z, et al.Continued growth controlling of the non-preferred primary phase for the parallel lamellar structure in directionally solidified Ti-50Al-4Nb alloy[J]. J. Alloys Compd., 2015, 632: 152
[34] Liu G H, Li T R, Fu T L, et al.Morphology and competitive growth during the development of the parallel lamellar structure by self-seeding in directionally solidified Ti-50Al-4Nb alloy[J]. J. Alloys Compd., 2016, 682: 601
[35] Liu T, Luo L S, Zhang D H, et al.Comparison of microstructures and mechanical properties of as-cast and directionally solidified Ti-47Al-1W-0.5Si alloy[J]. J. Alloys Compd., 2016, 682: 663
[36] Li X Z, Fan J L, Su Y Q, et al.Lamellar orientation and growth direction of α phase in directionally solidified Ti-46Al-0.5W-0.5Si alloy[J]. Intermetallics, 2012, 27: 38
[37] Du Y J, Shen J, Xiong Y L, et al.Determining the effects of growth velocity on microstructure and mechanical properties of Ti-47Al alloy using electromagnetic confinement and directional solidification[J]. JOM, 2014, 66: 1914
[38] Du Y J, Shen J, Xiong Y L, et al.Lamellar microstructure alignment in Ti-47Al alloy by electromagnetic confinement and directional solidification using a seed[J]. JOM, 2015, 67: 1258
[39] Du Y J, Shen J, Xiong Y L, et al.Stability of lamellar microstructures in a Ti-48Al-2Nb-2Cr alloy during heat treatment and its application to lamellae alignment as a quasi-seed[J]. Intermetallics, 2015, 61: 80
[40] Liu T, Luo L S, Su Y Q, et al.Lamellar orientation control of Ti-47Al-0.5W-0.5Si by directional solidification using β seeding technique[J]. Intermetallics, 2016, 73: 1
[1] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[2] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[4] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[5] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[6] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[7] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[8] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[11] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[12] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[13] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[14] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[15] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.