Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 349-360    DOI: 10.11900/0412.1961.2023.00004
  研究论文 本期目录 | 过刊浏览 |
中锰钢奥氏体中化学界面变形行为的晶体塑性研究
贾春妮1, 刘腾远1,2, 郑成武1(), 王培1, 李殿中1()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Micro-Deformation Behavior of Austenite Containing Chemical Boundary in a Medium Mn Steel: A Crystal Plasticity Modeling
JIA Chunni1, LIU Tengyuan1,2, ZHENG Chengwu1(), WANG Pei1, LI Dianzhong1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
Chunni JIA, Tengyuan LIU, Chengwu ZHENG, Pei WANG, Dianzhong LI. Micro-Deformation Behavior of Austenite Containing Chemical Boundary in a Medium Mn Steel: A Crystal Plasticity Modeling[J]. Acta Metall Sin, 2025, 61(2): 349-360.

全文: PDF(1625 KB)   HTML
摘要: 

针对中锰钢奥氏体中形成的Mn化学界面,基于晶体塑性理论框架,建立了考虑位错密度演化及形变诱导相变的晶体塑性模型,研究了单一奥氏体晶粒内部存在化学界面情况下的微观变形行为,获得了奥氏体晶粒内部应力、应变及位错密度的分布,以及变形过程中形变诱导相变分数的演化。结果显示,奥氏体中化学界面的存在不仅能引起晶粒内部的应力与应变产生微区配分,即富Mn侧奥氏体承载更多的应力,贫Mn侧奥氏体承载更多的应变,而且会使同一个奥氏体晶粒内部各处的机械稳定性呈现差异性分布,使奥氏体在变形过程中渐次地发生相变诱导塑性(TRIP)效应,从而提高材料的强度和塑性。

关键词 中锰钢奥氏体化学界面形变诱导马氏体相变晶体塑性    
Abstract

Chemical boundaries (CBs) delineate two areas within a continuous lattice that have same structures but exhibit a sharp chemical discontinuity. CBs can be seen as a unique planar defect that is distinct in certain aspects from traditional physical interfaces such as phase boundaries and grain boundaries (GBs). Recently, GBs have been established within the austenite of medium Mn steels; they have been proven to substantially enhance the stability of austenite. This allows austenite to be easily retained at room temperature and offers additional possibilities for managing its mechanical stability. In this study, a crystal plasticity modeling was performed to simulate the deformation behavior of austenite containing a CB. First, an extended dislocation-based crystal plastic model that incorporates the deformation-induced martensitic transformation and stacking fault energy was developed. The inverse Nishiyama-Wassermann (N-W) relation was used to accurately describe the orientation relationship between austenite and newly formed martensite. The Mn content on both sides of the CB is taken as a state variable to calculate the stacking fault energy. This leads to varying responses in the deformation-induced martensitic transformation and dislocation slip within a single austenite grain. Results reveal a strain incompatibility between Mn-rich and Mn-poor austenite that causes a geometrically necessary dislocation to accumulate near the CB. Furthermore, the deformation-induced martensitic transformation on both sides of the CB behaves differently, leading to a “spectral” distribution of mechanical stability within a single austenite grain. This heterogeneity in the mechanical stability of austenite is highly beneficial. It allows a gradual deformation-induced phase transformation throughout the entire deformation process, which is crucial for enhancing the strength and plasticity of transformation induced plasticity (TRIP)-aided steels simultaneously.

Key wordsmedium Mn steel    austenite    chemical boundary    deformation-induced martensite transformation    crystal plasticity
收稿日期: 2022-12-30     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52301181);国家自然科学基金项目(52071322)
通讯作者: 郑成武,cwzheng@imr.ac.cn,主要从事先进钢铁微观组织与转变机制研究;
李殿中,dzli@imr.ac.cn,主要从事特殊钢与大构件制备研究
Corresponding author: ZHENG Chengwu, professor, Tel: (024)23971973, E-mail: cwzheng@imr.ac.cn;
LI Dianzhong, professor, Tel: (024)23971281, E-mail: dzli@imr.ac.cn
作者简介: 贾春妮,女,1994年生,博士
图1  晶体塑性模型中变形梯度乘法分解的示意图
αMs=msαnsααMs=msαnsα
1011¯111/6701111¯1/6
2101¯111/68101¯11¯1/6
311¯0111/6911011¯1/6
4011¯1¯11/610011111¯/6
51011¯11/611101111¯/6
61101¯11/61211¯0111¯/6
表1  fcc结构材料的滑移系
βtrxtrytrztrrtrθtr
1[100][010][001][010]+10.26°
2[100][010][001][010]-10.26°
3[100][010][001][001]+10.26°
4[100][010][001][001]-10.26°
5[010][100][001][100]+10.26°
6[010][100][001][100]-10.26°
7[010][100][001][001]+10.26°
8[010][100][001][001]-10.26°
9[001][100][010][100]+10.26°
10[001][100][010][100]-10.26°
11[001][100][010][010]+10.26°
12[001][100][010][010]-10.26°
表2  反N-W关系定义的12个形变诱导马氏体相变的等效相变系

δ

α

123456789101112
10-3/2-3/2000000000
23/20-3/2000000000
33/23/20000000000
40000-3/2-3/2000000
50003/203/2000000
60003/2-3/20000000
70000000-3/2-3/2000
80000003/203/2000
90000003/2-3/20000
1000000000003/23/2
11000000000-3/203/2
12000000000-3/2-3/20
表3  fcc滑移系到层错带系的滑移量投影矩阵
δMtw=mtwδntwδαMtw=mtwδntwδ
12¯11111/672¯1¯111¯1/6
21¯21¯111/681¯1211¯1/6
3112¯111/6921¯111¯1/6
42¯1¯1¯1¯11/61012¯1¯111¯/6
5121¯1¯11/611111111¯/6
61¯12¯1¯11/6121¯1¯2¯111¯/6
表4  fcc晶体的层错带系
图2  变形梯度及其内部相关变量求解过程的示意图
图3  奥氏体中Mn化学界面微结构的几何模型
图4  奥氏体内部化学界面附近的微区应变演化
图5  奥氏体内部化学界面附近的微区应力演化
εεmax - εminτmax - τmin / MPa
0.0250.05 × 10-200.8
0.0500.05 × 10-204.4
0.0751.41 × 10-220.4
0.1002.78 × 10-271.1
表5  奥氏体内部Mn化学界面两侧的微区应力及应变差统计值
图6  应变为0.025时沿图4b和5b中L1-L1'和L2-L2'的微区应力和应变分布情况
图7  应变为0.1时计算所得化学界面附件的位错密度分布
图8  应变为0.05时形变诱导马氏体体积分数分布情况和变形过程中奥氏体内化学界面两侧马氏体相变动力学
1 Yang L, Li X Y, Lu K. Making materials plain: Concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
doi: 10.11900/0412.1961.2017.00316
1 杨 乐, 李秀艳, 卢 柯. 材料素化: 概念、原理及应用 [J]. 金属学报, 2017, 53: 1413
2 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
3 Wu X L, Zhu Y T. Heterostructured metallic materials: Plastic deformation and strain hardening [J]. Acta Metall. Sin., 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
3 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化 [J]. 金属学报, 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
4 Wan X H, Liu G, Yang Z G, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure [J]. Scr. Mater., 2021, 198: 113819
5 Kim J H, Gu G, Koo M, et al. Enhanced ductility of as-quenched martensite by highly stable nano-sized austenite [J]. Scr. Mater., 2021, 201: 113955
6 Wang J W, Chen Y B, Zhu Q, et al. Grain boundary dominated plasticity in metallic materials [J]. Acta Metall. Sin., 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
6 王江伟, 陈映彬, 祝 祺 等. 金属材料的晶界塑性变形机制 [J]. 金属学报, 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
7 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
8 Wang Y, Li J, Rong X Q, et al. Application of fast heating of the 3rd generation advanced high strength steel [J]. Steel Rolling, 2022, 39(4): 18
8 王 岩, 李 俊, 荣雪荃 等. 快速加热技术在第3代先进高强钢中的应用 [J]. 轧钢, 2022, 39(4): 18
9 Wan X H, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium mn steels [J]. Scr. Mater., 2019, 166: 68
10 Roters F, Diehl M, Shanthraj P, et al. DAMASK—The Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale [J]. Comput. Mater. Sci., 2019, 158: 420
11 Ma A X, Hartmaier A. A study of deformation and phase transformation coupling for trip-assisted steels [J]. Int. J. Plast., 2015, 64: 40
12 Guo X R, Shen J J. Modelling of the plastic behavior of Cu crystal with twinning-induced softening and strengthening effects [J]. Acta Metall. Sin., 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
12 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟 [J]. 金属学报, 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
13 Sun C Y, Guo X R, Guo N, et al. Investigation of plastic deformation behavior on coupling twinning of polycrystal TWIP steel [J]. Acta Metall. Sin., 2015, 51: 1507
doi: 10.11900/0412.1961.2015.00156
13 孙朝阳, 郭祥如, 郭 宁 等. 耦合孪生的TWIP钢多晶体塑性变形行为研究 [J]. 金属学报, 2015, 51: 1507
doi: 10.11900/0412.1961.2015.00156
14 Connolly D S, Kohar C P, Muhammad W, et al. A coupled thermomechanical crystal plasticity model applied to quenched and partitioned steel [J]. Int. J. Plast., 2020, 133: 102757
15 Lee M G, Kim S J, Han H N. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite [J]. Int. J. Plast., 2010, 26: 688
16 Wong S L, Madivala M, Prahl U, et al. A crystal plasticity model for twinning- and transformation-induced plasticity [J]. Acta Mater., 2016, 118: 140
17 Feng R, Zhang M H, Chen N L, et al. Finite element simulation of the effect of stress relaxation on strain-induced martensitic transformation [J]. Acta Metall. Sin., 2014, 50: 498
doi: 10.3724/SP.J.1037.2013.00559
17 冯 瑞, 张美汉, 陈乃录 等. 应力松弛对应变诱发马氏体相变影响的有限元模拟 [J]. 金属学报, 2014, 50: 498
18 Roters F, Eisenlohr P, Kords C, et al. DAMASK: The Düsseldorf advanced material simulation kit for studying crystal plasticity using an Fe based or a spectral numerical solver [J]. Procedia IUTAM, 2012, 3: 3
19 Sinclair C W, Hoagland R G. A molecular dynamics study of the fcc→bcc transformation at fault intersections [J]. Acta Mater., 2008, 56: 4160
20 Orowan E. Zur kristallplastizität. I [J]. Z. Physik, 1934, 89: 605
21 Ma A, Roters F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Mater., 2004, 52: 3603
22 Roters F, Raabe D, Gottstein G. Work hardening in heterogeneous alloys—A microstructural approach based on three internal state variables [J]. Acta Mater., 2000, 48: 4181
23 Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Trans., 1975, 6A: 791
24 Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations [J]. J. Less Common Met., 1972, 28: 107
25 Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
26 Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
27 Talonen J, Hänninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels [J]. Acta Mater., 2007, 55: 6108
28 Gupta S, Ma A X, Hartmaier A. Mechanical twinning induced alteration in the kinetics of martensitic phase transformation in TRIP-maraging steels [J]. Int. J. Solids Struct., 2018, 155: 213
29 Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
30 Field D M, Qing J J, Van Aken D C. Chemistry and properties of medium-Mn two-stage TRIP steels [J]. Metall. Mater. Trans., 2018, 49A: 4615
31 Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels [J]. Metall. Mater. Trans., 2009, 40A: 3076
32 Diehl M, Wang D, Liu C L, et al. Solving material mechanics and multiphysics problems of metals with complex microstructures using DAMASK—The Düsseldorf advanced material simulation kit [J]. Adv. Eng. Mater., 2020, 22: 1901044
33 Shih M, Miao J S, Mills M, et al. Stacking fault energy in concentrated alloys [J]. Nat. Commun., 2021, 12: 3590
doi: 10.1038/s41467-021-23860-z pmid: 34117239
34 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
35 Kim J H, Gu G, Kwon M H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite [J]. Acta Mater., 2022, 223: 117506
36 Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning [J]. Scr. Mater., 2011, 65: 225
37 Yang H, Wang H M, Yang Z L, et al. In situ neutron diffraction and crystal plasticity analysis on Q&P1180 steel during plastic deformation [J]. Mater. Sci. Eng., 2021, 802A: 140425
38 Chen S H, Zhao M J, Li X Y, et al. Compression stability of reversed austenite in 9Ni steel [J]. J. Mater. Sci. Technol., 2012, 28: 558
[1] 吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
[2] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[3] 唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩, 杨志刚. 高强钢中亚稳奥氏体对断裂韧性影响的研究进展[J]. 金属学报, 2025, 61(1): 77-87.
[4] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[5] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[6] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[7] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[8] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[9] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[10] 谢泽东, 丁灿灿, 温鹏宇, 罗海文. 闪速加热对2000 MPa级热成形钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(12): 1667-1677.
[11] 张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
[12] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[13] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[14] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.