Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2023.00036
  本期目录 | 过刊浏览 |
闪速加热对2000 MPa级热成形钢显微组织和力学性能的影响
谢泽东,丁灿灿,温鹏宇,罗海文
北京科技大学 冶金与生态工程学院 北京 100083
Effect of Flash Heating on Microstructure and Mechanical Properties of 2000 MPa Hot Stamping Steel
全文: PDF(2900 KB)  
摘要: 研究了一种新型2000 MPa级热成形钢以150℃/s闪速加热至850~950℃后再回火的显微组织和拉伸力学性能。结果表明,与常规加热工艺相比,在相同温度下闪速加热可同时改善材料的强度和塑性。2000 MPa级热成形钢经闪速加热至950℃可获得最佳力学性能,抗拉强度为2180 MPa、延伸率为13%,较相同温度下常规加热样品分别提高了约200 MPa和4%,这是由于闪速加热导致淬火后形成的马氏体组织显著细化、位错密度更高且残余奥氏体更多。残余奥氏体的增多主要与初始组织中富C/Mn渗碳体在闪速加热时固溶形成的C/Mn富集区未及时扩散均匀化相关。随着闪速加热温度升高,更多渗碳体可以固溶,因此残余奥氏体体积分数逐渐增大,奥氏体逆转变动力学模拟计算结果也证实了这一点。
关键词 热成形钢闪速加热力学性能渗碳体残余奥氏体    
Abstract:Hot stamping steels (HSSs) have been widely used in automobiles, to reduce weight and improve safety due to their ultrahigh strength and ease of synthesis at high temperatures. At present, steel sheets with high strength and good ductility are needed to further reduce the weight of manufactured products. The most popular HSS grade in use at present is 22MnB5, which has an ultimate tensile strength (UTS) of 1500 MPa, but it has a ductility of less than 7%, which is quite poor. Driven by the demand for weight reduction in the automotive industries, we have developed a 2000 MPa HSS by employing a new alloying design and an ultrafast heating process. The latter has received much less attention than the former, although it demonstrates huge potential for improving mechanical properties and production efficiency of HSSs. In this study, we experimented with heating processes, including conventional and flash heating, at a ramp of 150℃/s in the temperature range of 850°C–950℃ before tempering at 150℃; furthermore, we examined their effects on the microstructures and mechanical properties of a new type of 2000 MPa HSS. Compared with the conventional heating at a relatively low ramp rate, the flash heating improved the strength and ductility of 2000 MPa HSS, simultaneously. Moreover, their best tensile properties were achieved after flash heating to 950℃: UTS was 2180 MPa and total elongation was 13%, which were approximately 200 MPa and 4% higher than those obtained using conventional heating, respectively. This is because flash heating results in the formation of a more refined hierarchical martensite structure after quenching, with a higher dislocation density and a larger fraction of retained austenite (RA). RA was formed by dissolving cementite particles containing high C/Mn concentrations, which were then inherited in the formed austenite after quenching due to insufficient time for the homogenization of solute C/Mn by diffusion during the flash heating. The volume fraction of RA increased gradually with an increase in the flash heating temperature as, then, more cementite particles were dissolved. This was also confirmed by kinetic simulations that reversed the austenitization on the dissolving cementite. Finally, we propose that flash heating technology is a promising technology for the production of ultra-strong and ductile HSS sheets.
Key wordshot stamping steel    flash heating    mechanical properties    cementite    retained austenite
收稿日期: 2023-02-03     
基金资助:国家自然科学基金项目;国家自然科学基金项目;中央高校基本科研业务费
通讯作者: 罗海文   
Corresponding author: hai wenluo   

引用本文:

谢泽东 丁灿灿 温鹏宇 罗海文. 闪速加热对2000 MPa级热成形钢显微组织和力学性能的影响[J]. 金属学报, 10.11900/0412.1961.2023.00036.

链接本文:

https://www.ams.org.cn/CN/Y0/V/I/0

[1] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[5] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[14] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.