|
|
高强钢中亚稳奥氏体对断裂韧性影响的研究进展 |
唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩( ), 杨志刚 |
清华大学 材料学院 教育部先进材料重点实验室 北京 100084 |
|
Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels |
TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao( ), YANG Zhigang |
Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩, 杨志刚. 高强钢中亚稳奥氏体对断裂韧性影响的研究进展[J]. 金属学报, 2025, 61(1): 77-87.
Jingtao TANG,
Yingjie YAO,
Youyou ZHANG,
Wenhua WU,
Yubo LI,
Hao CHEN,
Zhigang YANG.
Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels[J]. Acta Metall Sin, 2025, 61(1): 77-87.
1 |
Garrison W M. Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, 42(5): 20
|
2 |
Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear[J]. J. Aeronaut. Mater., 2017, 37(6): 1
|
2 |
赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望[J]. 航空材料学报, 2017, 37(6): 1
|
3 |
Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metall. Sin., 2020, 56: 494
doi: 10.11900/0412.1961.2019.00328
|
3 |
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56: 494
doi: 10.11900/0412.1961.2019.00328
|
4 |
Gupta M K, Singhal V. Review on materials for making lightweight vehicles[J]. Mater. Today Proc., 2022, 56: 868
|
5 |
Yi H L, Sun L, Xiong X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Mater. Sci. Technol., 2018, 34: 1112
|
6 |
Li J H, Zhan D P, Jiang Z H, et al. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review[J]. J. Mater. Res. Technol., 2023, 23: 172
|
7 |
Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metall. Sin., 2010, 46: 687
|
7 |
王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
|
8 |
Ritchie R O. Toughening materials: Enhancing resistance to fracture[J]. Philos. Trans. Roy. Soc., 2021, 379A: 20200437
|
9 |
Lu K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
10 |
Yao Y J, Fan L Y, Ding R, et al. On the role of cellular microstructure in austenite reversion in selective laser melted maraging steel[J]. J. Mater. Sci. Technol., 2024, 184: 180
doi: 10.1016/j.jmst.2023.10.032
|
11 |
Wang B, Niu M C, Wang W, et al. Microstructure and strength-toughness of a Cu-contained maraging stainless steel[J]. Acta Metall. Sin., 2023, 59: 636
doi: 10.11900/0412.1961.2021.00599
|
11 |
王 滨, 牛梦超, 王 威 等. 含Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59: 636
|
12 |
Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel[J]. Phys. Procedia, 2011, 12: 255
|
13 |
Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 oC[J]. J. Alloys Compd., 2016, 679: 184
|
14 |
Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Mater. Charact., 2018, 144: 393
|
15 |
Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength Aermet 100 steel[J]. Metall. Mater. Trans., 2002, 33A: 1991
|
16 |
Jatczak C F. Retained austenite and its measurement by X-ray diffraction[EB/OL]. Section 2, Trans.SAE, InternationalSAE, 1980: 1657
|
17 |
Wang H L, Zhang J, Huang J T, et al. The evolution of a microstructure during tempering and its influence on the mechanical properties of AerMet 100 steel[J]. Materials, 2023, 16: 6907
|
18 |
Vander Voort G F. Metallographic techniques for tool steels[A]. Vol.9, ASM Handbook[M]. Material Park, OH: ASM International, 2004, 644
|
19 |
Habiby F, ul Haq A, Khan A Q. Influence of austenite on the coercive force, electrical resistivity and hardness of 18% Ni maraging steels[J]. Mater. Des., 1992, 13: 259
|
20 |
Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metall. Trans., 1993, 24A: 1943
|
21 |
Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Mater. Sci. Eng., 2020, A772: 138633
|
22 |
Sun D B, Wang H, An X G, et al. Quantitative evaluation of the contribution of carbide-free bainite, lath martensite, and retained austenite on the mechanical properties of C-Mn-Si high-strength steels[J]. Mater. Charact., 2023, 199: 112802
|
23 |
Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metall. Mater. Trans., 2001, 32A: 1527
|
24 |
Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metall. Trans., 1975, 6A: 791
|
25 |
Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation[J]. Metall. Trans., 1976, 7A: 1897
|
26 |
Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review[J]. Mater. Sci. Eng., 2020, A795: 140023
|
27 |
Bleck W, Guo X F, Ma Y. The TRIP effect and its application in cold formable sheet steels[J]. Steel Res. Int., 2017, 88: 1700218
|
28 |
Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility in high-strength steels[J]. Trans. Am. Soc. Met., 1967, 60: 252
|
29 |
Gerberich W W, Hemmings P L, Zackay V F. Fracture and fractography of metastable austenites[J]. Metall. Trans., 1971, 2: 2243
|
30 |
Tan X D, Ponge D, Lu W J, et al. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels[J]. Acta Mater., 2020, 186: 374
|
31 |
Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
|
31 |
胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
|
32 |
Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Res. Int., 2013, 84: 937
|
33 |
Caballero F G, García-Mateo C, Chao J, et al. Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels[J]. ISIJ Int., 2008, 48: 1256
|
34 |
Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Mater., 2003, 51: 5775
|
35 |
Chen X S, Huang X M, Liu J J, et al. Microstructure regulation and strengthening mechanisms of a hot-rolled & intercritical annealed medium-Mn steel containing Mn-segregation band[J]. Acta Metall. Sin., 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
|
35 |
陈学双, 黄兴民, 刘俊杰 等. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
|
36 |
Launey M E, Ritchie R O. On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
|
37 |
Ritchie R O, Zheng X R. Growing designability in structural materials[J]. Nat. Mater., 2022, 21: 968
doi: 10.1038/s41563-022-01336-9
pmid: 36002721
|
38 |
Bordone M, Monsalve A, Perez Ipiña J. Fracture toughness of high-manganese steels with TWIP/TRIP effects[J]. Eng. Fract. Mech., 2022, 275: 108837
|
39 |
Hu C, Pan S, Huang M X. Strong and tough heterogeneous TWIP steel fabricated by warm rolling[J]. Acta Metall. Sin., 2022, 58: 1519
doi: 10.11900/0412.1961.2022.00354
|
39 |
胡 晨, 潘 帅, 黄明欣. 高强高韧异质结构温轧TWIP钢[J]. 金属学报, 2022, 58: 1519
|
40 |
Lage M A, Assis K S, Mattos O R. Hydrogen influence on fracture toughness of the weld metal in super duplex stainless steel (UNS S32750) welded with two different heat input[J]. Int. J. Hydrogen Energy, 2015, 40: 17000
|
41 |
Sieurin H, Westin E M, Liljas M, et al. Fracture toughness of welded commercial lean duplex stainless steels[J]. Weld. World, 2009, 53: R24
|
42 |
Martis C J, Putatunda S K, Boileau J. Processing of a new high strength high toughness steel with duplex microstructure (ferrite + austenite)[J]. Mater. Des., 2013, 46: 168
|
43 |
Kobayashi J, Ina D, Futamura A, et al. Fracture toughness of an advanced ultrahigh-strength TRIP-aided steel[J]. ISIJ Int., 2014, 54: 955
|
44 |
Niu G, Zurob H S, Misra R D K, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure[J]. Acta Mater., 2022, 226: 117642
|
45 |
Ran X Z, Zhang S Q, Liu D, et al. Role of microstructural characteristics in combination of strength and fracture toughness of laser additively manufactured ultrahigh-strength AerMet100 steel[J]. Metall. Mater. Trans., 2021, 52A: 1248
|
46 |
Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metall. Trans., 1989, 20A: 105
|
47 |
Delagnes D, Pettinari-Sturmel F, Mathon M H, et al. Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering[J]. Acta Mater., 2012, 60: 5877
|
48 |
Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance[J]. Mater. Charact., 2018, 140: 103
|
49 |
Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. J. Alloys Compd., 2022, 928: 167135
|
50 |
He Y, Yang K, Qu W S, et al. Strengthening and toughening of a 2800-MPa grade maraging steel[J]. Mater. Lett., 2002, 56: 763
|
51 |
de Lima Filho V X, Lima T N, Griza S, et al. The increase of fracture toughness with solution annealing temperature in 18Ni maraging 300 steel[J]. Mater. Res., 2021, 24: e20200472
|
52 |
He Y, Yang K, Liu K, et al. Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel[J]. Metall. Mater. Trans., 2006, 37A: 1107
|
53 |
Kumar G, Ghosh S, Pallaspuro S, et al. Fracture toughness characteristics of thermo-mechanically rolled direct quenched and partitioned steels[J]. Mater. Sci. Eng., 2022, A840: 142788
|
54 |
Miihkinen V T T, Edmonds D V. Influence of retained austenite on the fracture toughness of high strength steels[A]. Fracture 84[M]. Amsterdam: Elsevier, 1984: 1481
|
55 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
56 |
Hu C, Huang C P, Liu Y X, et al. The dual role of TRIP effect on ductility and toughness of a medium Mn steel[J]. Acta Mater., 2023, 245: 118629
|
57 |
Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
|
58 |
Rohit B, Muktinutalapati N R. Austenite reversion in 18% Ni maraging steel and its weldments[J]. Mater. Sci. Technol., 2018, 34: 253
|
59 |
Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containing ceramics[J]. J. Am. Ceram. Soc., 2000, 83: 461
|
60 |
Reyes-Morel P E, Chen I W. Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: I, Stress assistance and autocatalysis[J]. J. Am. Ceram. Soc., 1988, 71: 343
|
61 |
Aoki M, Chiang Y M, Kosacki I, et al. Solute segregation and grain-boundary impedance in high-purity stabilized zirconia[J]. J. Am. Ceram. Soc., 1996, 79: 1169
|
62 |
Sun Q P, Zhao Z J, Chen W Z, et al. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics[J]. J. Am. Ceram. Soc., 1994, 77: 1352
|
63 |
Yoshida K, Wakai F, Nishiyama N, et al. Large increase in fracture resistance of stishovite with crack extension less than one micrometer[J]. Sci. Rep., 2015, 5: 10993
doi: 10.1038/srep10993
pmid: 26051871
|
64 |
Antolovich S D, Singh B. On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels[J]. Metall. Trans., 1971, 2B: 2135
|
65 |
Antolovich S D, Saxena A, Chanani G R. Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling[J]. Metall. Trans., 1974, 5: 623
|
66 |
McMeeking R M, Evans A G. Mechanics of transformation‐toughening in brittle materials[J]. J. Am. Ceram. Soc., 1982, 65: 242
|
67 |
Irwin G R. Fracturing and fracture mechanics[R]. Champagne: University of Illinois at Urbana-Champaign, 1961: 202
|
68 |
Irwin G R. Plastic zone near a crack and fracture toughness[A]. Proceedings of the 7th Sagamore Ordnance Materials Conference[C]. New York: Syracuse University Press, 1960: 463
|
69 |
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proc. Roy. Soc., 1957, 241A: 376
|
70 |
Bueckner H F. Novel principle for the computation of stress intensity factors[J]. Z. Angew. Math. Mech., 1970, 50: 529
|
71 |
Rice J R. Some remarks on elastic crack-tip stress fields[J]. Int. J. Solids Struct., 1972, 8: 751
|
72 |
Furuhara T. Matrix structure of martensite and bainite in steels[J]. Heat Treat., 2009, 24(2): 16
|
72 |
古原忠. 钢中马氏体和贝氏体基体组织的特征[J]. 热处理, 2009, 24(2): 16
|
73 |
Wang C D, Qiu H, Kimura Y, et al. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel[J]. Mater. Sci. Eng., 2016, A669: 48
|
74 |
Hockauf K, Wagner M F X, Mašek B, et al. Mechanisms of fatigue crack propagation in a Q&P-processed steel[J]. Mater. Sci. Eng., 2019, A754: 18
|
75 |
Faber K T, Evans A G. Crack deflection processes-I. Theory[J]. Acta Metall., 1983, 31: 565
|
76 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals[J]. Philos. Mag., 1974, 29A: 73
|
77 |
Wu R M, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels[J]. Metall. Mater. Trans., 2014, 45A: 1892
|
78 |
Zhou S B, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel[J]. J. Mater. Res. Technol., 2021, 14: 1021
doi: 10.1016/j.jmrt.2021.07.011
|
79 |
Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate[J]. Mater. Sci. Eng., 2016, A675: 153
|
80 |
Zhou Y T, Hojo T, Koyama M, et al. Effect of austempering treatment on the microstructure and mechanical properties of 0.4C-1.5Si-1.5Mn TRIP-aided bainitic ferrite steel[J]. Mater. Sci. Eng., 2021, A819: 141479
|
81 |
Landes J D, McCabe D E, Boulet J A M. Fracture Mechanics: Twenty-Fourth Volume[M]. Philadelphia: ASTM International, 1994: 48
|
82 |
Pardoen T, Marchal Y, Delannay F. Thickness dependence of cracking resistance in thin aluminium plates[J]. J. Mech. Phys. Solids, 1999, 47: 2093
|
83 |
Pardoen T, Delannay F. A method for the metallographical measurement of the CTOD at cracking initiation and the role of reverse plasticity on unloading[J]. Eng. Fract. Mech., 2000, 65: 455
|
84 |
Gao G H, Liu R, Wang K, et al. Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels[J]. Scr. Mater., 2020, 184: 12
|
85 |
Zhang S H, Lv D Z, Xiong J. The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: A CPFEM study[J]. J. Mater. Res. Technol., 2022, 18: 2963
|
86 |
Li Y J, Kang J, Zhang W N, et al. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels[J]. Mater. Sci. Eng., 2018, A710: 181
|
87 |
Wang Z, Huang M X. Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite[J]. Int. J. Plast., 2020, 134: 102851
|
88 |
Handerhan K J, Garrison W M. A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels[J]. Acta Metall. Mater., 1992, 40: 1337
|
89 |
Narayan R L, Raut D, Ramamurty U. A quantitative connection between shear band mediated plasticity and fracture initiation toughness of metallic glasses[J]. Acta Mater., 2018, 150: 69
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|