|
|
FGH96合金静态再结晶过程的显微组织演化 |
彭子超1( ), 罗俊鹏2, 赵宇3, 周磊1, 王旭青1, 邹金文1 |
1 中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095 2 中国航发南方工业有限公司 株洲 412002 3 中国航发湖南动力机械研究所 株洲 412002 |
|
Evolution of Microstrucutre During Static Recrystallization in FGH96 Superalloy |
PENG Zichao1( ), LUO Junpeng2, ZHAO Yu3, ZHOU Lei1, WANG Xuqing1, ZOU Jinwen1 |
1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 AECC South Industry Co. Ltd., Zhuzhou 412002, China 3 AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China |
引用本文:
彭子超, 罗俊鹏, 赵宇, 周磊, 王旭青, 邹金文. FGH96合金静态再结晶过程的显微组织演化[J]. 金属学报, 2025, 61(2): 235-242.
Zichao PENG,
Junpeng LUO,
Yu ZHAO,
Lei ZHOU,
Xuqing WANG,
Jinwen ZOU.
Evolution of Microstrucutre During Static Recrystallization in FGH96 Superalloy[J]. Acta Metall Sin, 2025, 61(2): 235-242.
1 |
Zou J W, Wang W X. Development and application of P/M superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 244
|
1 |
邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26(3): 244
|
2 |
Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
|
2 |
张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
|
3 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
|
4 |
Wang X Q, Luo X J, Zou J W. Effects of HIP temperature on microstructure of FGH96 superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 293
|
4 |
王旭青, 罗学军, 邹金文. 热等静压温度对FGH96粉末高温合金显微组织的影响 [J]. 航空材料学报, 2006, 26(3): 293
|
5 |
Zou J W, Liu D, Liu B C, et al. Simulation of wind chill process for turbine disk [J]. J. Mater. Eng., 2009, (10): 7
|
5 |
邹金文, 刘 东, 柳百成 等. 涡轮盘风冷过程数值模拟研究 [J]. 材料工程, 2009, (10): 7
|
6 |
Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology [M]. Beijing: National Defense Industry Press, 2012: 181
|
6 |
李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术 [M]. 北京: 国防工业出版社, 2012: 181
|
7 |
Hu B F, Chen H M, Jin K S, et al. Static recrystallization mechanism of FGH95 superalloy [J]. Chin. J. Nonferrous Met., 2004, 14: 901
|
7 |
胡本芙, 陈焕铭, 金开生 等. FGH95高温合金的静态再结晶机制 [J]. 中国有色金属学报, 2004, 14: 901
|
8 |
Huang G C, Liu G Q, Feng M N, et al. Effect of solution heat treatment on microstructure and properties of FGH95 alloy [J]. Trans. Mater. Heat Treat., 2017, 38: 71
|
8 |
黄国超, 刘国权, 冯敏楠 等. 固溶热处理工艺对FGH95合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38: 71
|
9 |
Liu J T, Liu G Q, Hu B F, et al. Study on the static recrystallization of FGH96 superalloy [J]. Trans. Mater. Heat Treat., 2005, 26: 12
|
9 |
刘建涛, 刘国权, 胡本芙 等. FGH96合金静态再结晶行为的研究 [J]. 材料热处理学报, 2005, 26: 12
|
10 |
Ning Y Q, Yao Z K. Recrystallization nucleation mechanism of FGH4096 powder metallurgy superalloy [J]. Acta Metall. Sin., 2012, 48: 1005
|
10 |
宁永权, 姚泽坤. FGH4096粉末高温合金的再结晶形核机制 [J]. 金属学报, 2012, 48: 1005
doi: 10.3724/SP.J.1037.2012.00116
|
11 |
Ning Y Q, Fu M W, Yao W. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application [J]. Mater. Sci. Eng., 2012, A539: 101
|
12 |
Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47
|
13 |
Jin Y, Lin B, Bernacki M, et al. Annealing twin development during recrystallization and grain growth in pure nickel [J]. Mater. Sci. Eng., 2014, A597: 295
|
14 |
Bair J L, Hatch S L, Field D P. Formation of annealing twin boundaries in nickel [J]. Scr. Mater., 2014, 81: 52
|
15 |
Randle V. The coincidence site lattice and the ‘sigma enigma’ [J]. Mater. Charact., 2001, 47: 411
|
16 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
17 |
Yuan Y, Gu Y F, Cui C Y, et al. A novel strategy for the design of advanced engineering alloys—Strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
|
18 |
Peng Z C, Zou J W, Wang Y, et al. Effects of solution temperatures on creep resistance in a powder metallurgy nickel-based superalloy [J]. Mater. Today Commun., 2021, 28: 102573
|
19 |
Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
19 |
李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
|
20 |
Fang B, Ji Z, Tian G F, et al. Investigation on complete solution temperature of γ′ in the P/M superalloy of FGH96 [J]. Powder. Metall. Technol., 2013, 31: 89
|
20 |
方 彬, 纪 箴, 田高峰 等. FGH96高温合金中γ′相完全溶解温度的研究 [J]. 粉末冶金技术, 2013, 31: 89
|
21 |
Cui Z Q, Qin Y C. Metallography and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 202
|
21 |
崔忠圻, 覃耀春. 金属学与热处理 [M]. 第 2版, 北京: 机械工业出版社, 2007: 202
|
22 |
Kamaya M. Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient [J]. Ultramicroscopy, 2011, 111: 1189
doi: 10.1016/j.ultramic.2011.02.004
pmid: 21763236
|
23 |
Hu J, Lin D L, Wang Y. EBSD analyses of the microstructural evolution and CSL characteristic grain boundary of coarse-grained NiAl alloy during plastic deformation [J]. Acta Metall. Sin., 2009, 45: 652
|
23 |
胡 静, 林栋樑, 王 燕. EBSD技术分析大晶粒NiAl合金高温塑性变形组织演变与CSL特征晶界分布 [J]. 金属学报, 2009, 45: 652
|
24 |
Wu J Q, Chen K, Chen X F, et al. Application of EBSD in the study of dynamic recrystallization mechanisms in Nimonic 80A [J]. J. Chin. Electron Microsc. Soc., 2011, 30: 356
|
24 |
吴洁琼, 陈 科, 陈杏芳 等. EBSD在Nimonic 80A动态再结晶机制研究中的应用 [J]. 电子显微学报, 2011, 30: 356
|
25 |
Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals [J]. Acta Mater., 1997, 45: 2633
|
26 |
Gleiter H. The mechanism of grain boundary migration [J]. Acta Metall., 1969, 17: 565
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|