Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 235-242    DOI: 10.11900/0412.1961.2022.00540
  研究论文 本期目录 | 过刊浏览 |
FGH96合金静态再结晶过程的显微组织演化
彭子超1(), 罗俊鹏2, 赵宇3, 周磊1, 王旭青1, 邹金文1
1 中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
2 中国航发南方工业有限公司 株洲 412002
3 中国航发湖南动力机械研究所 株洲 412002
Evolution of Microstrucutre During Static Recrystallization in FGH96 Superalloy
PENG Zichao1(), LUO Junpeng2, ZHAO Yu3, ZHOU Lei1, WANG Xuqing1, ZOU Jinwen1
1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 AECC South Industry Co. Ltd., Zhuzhou 412002, China
3 AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China
引用本文:

彭子超, 罗俊鹏, 赵宇, 周磊, 王旭青, 邹金文. FGH96合金静态再结晶过程的显微组织演化[J]. 金属学报, 2025, 61(2): 235-242.
Zichao PENG, Junpeng LUO, Yu ZHAO, Lei ZHOU, Xuqing WANG, Jinwen ZOU. Evolution of Microstrucutre During Static Recrystallization in FGH96 Superalloy[J]. Acta Metall Sin, 2025, 61(2): 235-242.

全文: PDF(2999 KB)   HTML
摘要: 

为系统揭示FGH96合金静态再结晶机制,指导其固溶处理工艺制定,本工作在1100~1260 ℃温度范围内对锻态FGH96合金进行固溶处理,采用EBSD及TEM等手段研究了FGH96合金静态再结晶过程中的显微组织演化规律,分析了FGH96合金静态再结晶机制及Σ3孪晶界的形成机理。结果表明,固溶温度会影响FGH96合金的晶粒尺寸及晶界特征(小角度晶界、大角度晶界和Σ3孪晶界),且随着固溶温度提高,晶粒尺寸及晶界特征呈现出特定的演化规律。FGH96合金的静态再结晶机制以亚晶形核长大机制为主,且在静态再结晶过程中,平行于(111¯)密排面的原子堆垛出现错排而形成层错,为了降低体系的自由能,后续在(111¯)密排面上堆垛的原子应以与该层错呈晶面对称的方式进行堆垛,以提高体系的对称性,降低体系能量,从而形成了Σ3孪晶界。

关键词 FGH96高温合金固溶温度再结晶Σ3晶界    
Abstract

FGH96 alloy is a nickel-based superalloy that is commonly used in fabricating the turbine disks of aero engines owing of its excellent mechanical properties. Because the properties of nickel-based superalloys are determined based on their microstructure, researchers have been studying the evolution of microstructure in FGH96. However, most studies have focused on FGH96 superalloys that have undergone a hot isostatic pressing (HIP) process or a combination of HIP and hot isostatic forging. Recently, hot extrusion (HEX) has been widely used for manufacturing FGH96 superalloys; however, the research on alloys manufactured via HEX is scarce. In this study, FGH96 superalloys were solution heat-treated at temperatures ranging from 1100 oC to 1260 oC, and the evolution of their microstructure was analyzed via OM, EBSD, and TEM techniques. The mechanism of static recrystallization and the formation mechanism of Σ3 twin boundaries were also investigated. The results showed that the static recrystallization grain size and grain boundaries, including small angle boundaries, large angle boundaries, and Σ3 twin boundaries, were substantially influenced by the solution temperature. Furthermore, a distinct correlation existed between the microstructure evolution and solution temperature. The static recrystallization in the FGH96 alloy mainly occurs through the nucleation and growth of subgrains at temperatures ranging from 1100 oC to 1260 oC. During the static recrystallization process, a large number of stacking faults formed at the (111¯) close-packed plane, which improved the free energy. Therefore, to reduce the free energy, subsequent atoms were stacked symmetrically to the stacking faults, leading to the formation of Σ3 twin boundaries.

Key wordsFGH96 superalloy    solution temperature    recrystallization    Σ3 twin boundary
收稿日期: 2022-10-24     
ZTFLH:  TG132.32  
通讯作者: 彭子超,pengzichaonba@126.com,主要从事粉末高温合金及其制件研究
Corresponding author: PENG Zichao, professor, Tel: (010)62498272, E-mail: pengzichaonba@126.com
作者简介: 彭子超,男,1986年生,研究员,博士
图1  不同状态FGH96合金试样显微组织的OM像
图2  不同固溶温度FGH96合金的晶界特征
图3  不同温度固溶处理后FGH96合金的TEM像
图4  FGH96合金中的Σ3孪晶界
图5  FGH96合金中Σ3孪晶的形成机理
1 Zou J W, Wang W X. Development and application of P/M superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 244
1 邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26(3): 244
2 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
2 张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
3 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
4 Wang X Q, Luo X J, Zou J W. Effects of HIP temperature on microstructure of FGH96 superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 293
4 王旭青, 罗学军, 邹金文. 热等静压温度对FGH96粉末高温合金显微组织的影响 [J]. 航空材料学报, 2006, 26(3): 293
5 Zou J W, Liu D, Liu B C, et al. Simulation of wind chill process for turbine disk [J]. J. Mater. Eng., 2009, (10): 7
5 邹金文, 刘 东, 柳百成 等. 涡轮盘风冷过程数值模拟研究 [J]. 材料工程, 2009, (10): 7
6 Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology [M]. Beijing: National Defense Industry Press, 2012: 181
6 李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术 [M]. 北京: 国防工业出版社, 2012: 181
7 Hu B F, Chen H M, Jin K S, et al. Static recrystallization mechanism of FGH95 superalloy [J]. Chin. J. Nonferrous Met., 2004, 14: 901
7 胡本芙, 陈焕铭, 金开生 等. FGH95高温合金的静态再结晶机制 [J]. 中国有色金属学报, 2004, 14: 901
8 Huang G C, Liu G Q, Feng M N, et al. Effect of solution heat treatment on microstructure and properties of FGH95 alloy [J]. Trans. Mater. Heat Treat., 2017, 38: 71
8 黄国超, 刘国权, 冯敏楠 等. 固溶热处理工艺对FGH95合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38: 71
9 Liu J T, Liu G Q, Hu B F, et al. Study on the static recrystallization of FGH96 superalloy [J]. Trans. Mater. Heat Treat., 2005, 26: 12
9 刘建涛, 刘国权, 胡本芙 等. FGH96合金静态再结晶行为的研究 [J]. 材料热处理学报, 2005, 26: 12
10 Ning Y Q, Yao Z K. Recrystallization nucleation mechanism of FGH4096 powder metallurgy superalloy [J]. Acta Metall. Sin., 2012, 48: 1005
10 宁永权, 姚泽坤. FGH4096粉末高温合金的再结晶形核机制 [J]. 金属学报, 2012, 48: 1005
doi: 10.3724/SP.J.1037.2012.00116
11 Ning Y Q, Fu M W, Yao W. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application [J]. Mater. Sci. Eng., 2012, A539: 101
12 Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47
13 Jin Y, Lin B, Bernacki M, et al. Annealing twin development during recrystallization and grain growth in pure nickel [J]. Mater. Sci. Eng., 2014, A597: 295
14 Bair J L, Hatch S L, Field D P. Formation of annealing twin boundaries in nickel [J]. Scr. Mater., 2014, 81: 52
15 Randle V. The coincidence site lattice and the ‘sigma enigma’ [J]. Mater. Charact., 2001, 47: 411
16 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
17 Yuan Y, Gu Y F, Cui C Y, et al. A novel strategy for the design of advanced engineering alloys—Strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
18 Peng Z C, Zou J W, Wang Y, et al. Effects of solution temperatures on creep resistance in a powder metallurgy nickel-based superalloy [J]. Mater. Today Commun., 2021, 28: 102573
19 Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
19 李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
20 Fang B, Ji Z, Tian G F, et al. Investigation on complete solution temperature of γ′ in the P/M superalloy of FGH96 [J]. Powder. Metall. Technol., 2013, 31: 89
20 方 彬, 纪 箴, 田高峰 等. FGH96高温合金中γ′相完全溶解温度的研究 [J]. 粉末冶金技术, 2013, 31: 89
21 Cui Z Q, Qin Y C. Metallography and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 202
21 崔忠圻, 覃耀春. 金属学与热处理 [M]. 第 2版, 北京: 机械工业出版社, 2007: 202
22 Kamaya M. Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient [J]. Ultramicroscopy, 2011, 111: 1189
doi: 10.1016/j.ultramic.2011.02.004 pmid: 21763236
23 Hu J, Lin D L, Wang Y. EBSD analyses of the microstructural evolution and CSL characteristic grain boundary of coarse-grained NiAl alloy during plastic deformation [J]. Acta Metall. Sin., 2009, 45: 652
23 胡 静, 林栋樑, 王 燕. EBSD技术分析大晶粒NiAl合金高温塑性变形组织演变与CSL特征晶界分布 [J]. 金属学报, 2009, 45: 652
24 Wu J Q, Chen K, Chen X F, et al. Application of EBSD in the study of dynamic recrystallization mechanisms in Nimonic 80A [J]. J. Chin. Electron Microsc. Soc., 2011, 30: 356
24 吴洁琼, 陈 科, 陈杏芳 等. EBSD在Nimonic 80A动态再结晶机制研究中的应用 [J]. 电子显微学报, 2011, 30: 356
25 Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals [J]. Acta Mater., 1997, 45: 2633
26 Gleiter H. The mechanism of grain boundary migration [J]. Acta Metall., 1969, 17: 565
[1] 刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
[2] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[3] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[4] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[5] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[6] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[7] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[8] 翟欣雅, 和正华, 沙玉辉, 朱晓飞, 李锋, 陈立佳, 左良. 巨磁致伸缩Fe-Ga合金薄带的抑制剂与二次再结晶行为[J]. 金属学报, 2024, 60(11): 1559-1570.
[9] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[11] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[13] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[14] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[15] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.