Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2022.00540
  本期目录 | 过刊浏览 |
FGH96合金静态再结晶过程的显微组织演化研究

彭子超1   罗俊鹏2   赵宇3   周磊1   王旭青1  邹金文1

1 中国航发北京航空材料研究院 先进高温结构材料重点实验室  北京 100095

2 中国航发南方工业有限公司  株洲 412002 

3 中国航发湖南动力机械研究所  株洲 412002

The evolution of microstrucutre during static recrystallization in FGH96 superalloy

PENG Zichao 1, LUO Junpeng 2, ZHAO Yu 3, ZHOU Lei 1, WANG Xuqing 1, ZOU Jinwen 1

1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, AECC, Beijing 100095, China

2 AECC South Industry Co., Ltd., Zhuzhou 412002, China

3 AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China

全文: PDF(2913 KB)  
摘要: 在1100°C~1260°C范围内对锻态FGH96合金进行固溶处理,然后采用EBSD及TEM分析FGH96合金静态再结晶过程中的显微组织演化规律,揭示FGH96合金静态再结晶机制及Σ3孪晶界的形成机理。结果表明,固溶温度会影响FGH96合金的晶粒度及晶界特征(小角度晶界、大角度晶界和Σ3孪晶界),且随着固溶温度提高,晶粒度及晶界特征呈现出特定的演化规律。FGH96合金的静态再结晶机制以亚晶形核长大机制为主,且在静态再结晶过程中,平行于(11-1)密排面的原子堆垛出现错排而形成层错,为了降低体系的自由能,后续在(11-1)密排面上堆垛的原子要以与该层错呈晶面对称的方式进行堆垛,以提高体系的对称性,降低体系能量,从而形成了Σ3孪晶界。
关键词 FGH96高温合金固溶温度再结晶Σ3晶界    
Abstract:FGH96 alloy, one of powder metallurgy (PM) nickel-based superalloys, was widely used in turbine disks of aero engines due to the excellent mechanical properties. For nickel-based superalloy, the properties were decided by the microstructure, therefore, the evolution of microstructure in FGH96 was always investigated. However, most investigations were carried on FGH96 superalloy with HIP process or HIP+HIF process. Recently, Hot Extrusion was widely used in FGH96 superalloy manufacture, but the study in HEX allloy was rarely. In this study, FGH96 superalloy were solution heat-treated at 1100°C~1260°C, and the evolution of microstructure was studied by OM, EBSD and TEM. The mechanism of static recrystallization and formation mechanism of Σ3 twin boundary were also revealed. It was found that the static recrystallization grain size and grain boundary (including Small Angle boundary, Large Angle boundary and Σ3 twin boundary) were deeply influenced by the solution temperature, and there was a particular correlation between microstrucutre evolution and solution temperature. At 1100°C~1260°C, it was proved that the static recrystallization in FGH96 alloy was mainly through the nucleation and growth of sub-grain. At the same time, during static recrystallization process, a large number of stacking faults formed at (11-1) close-packed plane which improved the free energy. Therefore, in order to reduce the free energy, subsequent atoms were stacked symmetrical to the stacking faults, and formed Σ3 twin boundary.
收稿日期: 2022-10-24     
通讯作者: 彭子超   

引用本文:

彭子超 罗俊鹏 赵宇 周磊 王旭青 邹金文. FGH96合金静态再结晶过程的显微组织演化研究[J]. 金属学报, 10.11900/0412.1961.2022.00540.

链接本文:

https://www.ams.org.cn/CN/Y0/V/I/0

[1] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[2] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[3] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[4] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[5] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[7] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[8] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[9] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[10] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[11] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[12] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[13] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[14] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[15] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.