Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 434-442    DOI: 10.11900/0412.1961.2022.00496
  研究论文 本期目录 | 过刊浏览 |
Ag对奥氏体不锈钢组织和力学性能的影响
江浩文1, 彭伟1,2(), 范增为1, 汪杨鑫1, 刘腾轼1,2, 董瀚1,2
1 上海大学 材料科学与工程学院 上海 200444
2 上海大学(浙江)高端装备基础件材料研究院 嘉兴 314100
Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel
JIANG Haowen1, PENG Wei1,2(), FAN Zengwei1, WANG Yangxin1, LIU Tengshi1,2, DONG Han1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China
引用本文:

江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
Haowen JIANG, Wei PENG, Zengwei FAN, Yangxin WANG, Tengshi LIU, Han DONG. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. Acta Metall Sin, 2024, 60(4): 434-442.

全文: PDF(3255 KB)   HTML
摘要: 

为深入了解Ag在不锈钢中的赋存与踪迹及其对微观组织和力学性能的影响,通过OM、SEM、二次离子质谱仪(SIMS)、EBSD和室温拉伸实验等测试手段研究了Ag含量对奥氏体不锈钢组织、织构和力学性能的影响规律。SIMS分析表明,Ag在奥氏体不锈钢中主要以Ag单质和Ag x S及Ag x N等化合物形式存在,主要分布于晶界处,少量分布于晶内。当Ag含量(质量分数)由0增加至0.062%时,奥氏体不锈钢的晶粒尺寸逐渐减小,平均晶粒尺寸由126 μm减小至47 μm,这是由于再结晶形核过程中粗大的Ag单质和Ag x S及Ag x N等化合物颗粒刺激再结晶形核(particle stimulated nucleation,简称PSN效应),而细小的Ag单质和Ag x S及Ag x N等化合物颗粒阻碍再结晶晶粒长大。EBSD结果表明,304、304Ag-1和304Ag-2不锈钢试样的最大极密度分别为3.24、2.71和2.22,表明Ag可以减弱奥氏体不锈钢的各向异性。随着Ag含量增加,奥氏体不锈钢的屈服强度和抗拉强度呈下降趋势,延伸率则呈上升趋势,且含Ag 304不锈钢与轧向呈0°、45°和90°方向的强度和延伸率一致性优于304不锈钢。在{111}〈110〉滑移系下晶粒的Schmid因子平均值随着Ag含量的增加而增大,晶粒中处于“软取向”的晶粒占比增多。

关键词 含Ag奥氏体不锈钢Ag的赋存踪迹力学性能再结晶晶粒取向    
Abstract

Austenitic stainless steels have wide applications due to their excellent properties, such as high strength, corrosion resistance, and superior workability. 304 stainless steel (304SS) is one of the most popular austenitic stainless steels. With a growing emphasis on healthcare, the antibacterial property of the materials becomes increasingly important. Ag is added to type 304 stainless steels to obtain an expected antibacterial property and reduce the occurrence of bacterial contamination. With the development of technology, previous research on Ag-bearing stainless steel was mainly concerned on its antibacterial properties, mechanical properties, and corrosion resistance. However, the microstructures of Ag-bearing stainless steels, especially the occurrence and distribution of Ag, have not been studied intensively. The present work studies the effects of Ag content on the microstructure, texture, and mechanical properties of austenitic stainless steel using OM, SEM, secondary ion mass spectrometer (SIMS), EBSD, and tensile test. SIMS analysis shows that Ag exists in austenitic stainless steel mainly in the form of Ag, Ag x S, and Ag x N compounds, which are mainly distributed at the grain boundaries and less within the grain. During recrystallization, the nucleation rate increases by the stimulation of coarse Ag, Ag x S, and Ag x N compound particles, while the grain growth is hindered by fine Ag, Ag x S, and Ag x N compound particles. Hence, the average grain size of 304, 304Ag-1, and 304Ag-2 stainless steel changes from (126 ± 3) μm to (47 ± 4) μm. The EBSD results show that the maximum pole densities of 304, 304Ag-1, and 304Ag-2 stainless steel samples are 3.24, 2.71, and 2.22, respectively, indicating that Ag can reduce the anisotropy of austenitic stainless steel. The yield strength and tensile strength of austenitic stainless steels decrease with the increase of Ag content, and the elongation increases with the increase of Ag content. Furthermore, strength and elongation consistency of Ag-bearing 304 stainless steel are much better compared to that of 304 steel at the angles of 0°, 45°, and 90° to rolling direction. The phenomenon of high Schmid factor grains surrounding low Schmid factor occurs in austenitic stainless steel, and the average Schmid factor of grains in {111} <110> slip system increases with the increase of Ag content, and the proportion of grains in “soft orientation” increases. Under the given loading stress, Ag-bearing austenitic stainless steel is more prone to deformation.

Key wordsAg-bearing austenitic stainless steel    occurrence trace of Ag    mechanical property    recrystallization    grain orientation
收稿日期: 2022-10-08     
ZTFLH:  TG142  
基金资助:上海市军民融合发展专项资金项目(2020-jmrh1-kj31)
通讯作者: 彭 伟,PengWei1688@shu.edu.cn,主要从事钢铁材料基础研究与工程技术研发工作
Corresponding author: PENG Wei, associate professor, Tel: 17621133366, E-mall: PengWei1688@shu.edu.cn
作者简介: 江浩文,男,1998年生,硕士生
SampleCSiMnPSCrNiCuMoAgFe
3040.0560.4041.140.03830.009417.478.090.02890.001Bal.
304Ag-10.0390.1791.230.02000.010018.269.370.01980.0090.034Bal.
304Ag-20.0390.1791.330.01980.007418.069.590.01990.0040.062Bal.
表1  不同Ag含量不锈钢的化学成分 (mass fraction / %)
图1  拉伸试样示意图
图2  不同Ag含量不锈钢的XRD谱
图3  不同Ag含量不锈钢的OM像
图4  304Ag-1和304Ag-2不锈钢的SEM像
PointCSiTiCrMnFeNiAg
A7.590.300.1917.571.3757.3610.085.54
B5.560.301.7718.591.4661.3510.97-
C7.610.320.3017.601.2756.2410.046.62
D7.590.170.5216.221.1154.727.9711.70
表2  图4中颗粒A~D的EDS结果 (mass fraction / %)
图5  304Ag-2不锈钢的SEM像和EDS面扫描结果
图6  304Ag-2不锈钢含Ag颗粒成分二次离子质谱(SIMS)
图7  304Ag-1和304Ag-2不锈钢表面SIMS二维元素分布图
图8  不同Ag含量不锈钢沿不同方向的工程应力-应变曲线
DirectionMaterialRm / MPaRp0.2 / MPaA / %
0° (RD)30473324177
304Ag-162323380
304Ag-259222181
45°30469022373
304Ag-161122380
304Ag-258521981
90° (TD)30470323580
304Ag-161523081
304Ag-259822381
表3  不同Ag含量不锈钢在不同拉伸方向的力学性能
图9  不同Ag含量不锈钢轧向(RD)、横向(TD)和法向(ND)的反极图
图10  不同Ag含量不锈钢在{111}〈110〉滑移系下的晶粒Schmid因子分布
图11  不同Ag含量不锈钢在{111}〈110〉滑移系下晶粒Schmid因子频率分布直方图
1 Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39
2 Yi R, Ye F, Zhang G G, et al. Current status of research on anti-bacterial stainless steels[J]. Electroplat. Finish., 2015, 34: 635
2 易 蓉, 叶 峰, 张果戈 等. 抗菌不锈钢研究现状[J]. 电镀与涂饰, 2015, 34: 635
3 Ma T, Li Y G. Development situation and application prospect of antibacterial stainless steels[J]. Mater. Rep., 2015, 29(13): 98
3 马 涛, 李运刚. 抗菌不锈钢的发展研究现状及展望[J]. 材料导报, 2015, 29(13): 98
4 Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, A675: 243
5 Xi T, Yang C G, Shahzad M B, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Mater. Des., 2015, 87: 303
doi: 10.1016/j.matdes.2015.08.011
6 Yuan Z, Xi T, Yang C G, et al. Enhancement of strength and ductility by Cu-rich precipitation in Cu-bearing 304L austenitic stainless steel[J]. Mater. Lett., 2020, 272: 127815
doi: 10.1016/j.matlet.2020.127815
7 Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J]. Int. Biodeterior. Biodegrad., 2016, 110: 199
doi: 10.1016/j.ibiod.2016.03.026
8 Li M J, Nan L, Xu D K, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. J. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1016/j.jmst.2014.11.016
9 Yokota T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Tech. Rep., 2002, 46: 37
10 Yang S M, Chen Y C, Pan Y T, et al. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2016, C63: 376
11 Liao K H, Ou K L, Cheng H C, et al. Effect of silver on antibacterial properties of stainless steel[J]. Appl. Surf. Sci., 2010, 256: 3642
doi: 10.1016/j.apsusc.2010.01.001
12 Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 539
doi: 10.1007/s40195-014-0085-8
13 Mo J Q, Feng G H, Zhang W, et al. Effects of Ag on microstructure and properties and its precipitation behavior in antibacterial stainless steel[J]. China Metall., 2022, 32(8): 62
13 莫金强, 冯光宏, 张 威 等. Ag对抗菌不锈钢组织性能的影响及其析出行为[J]. 中国冶金, 2022, 32(8): 62
14 Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27: 449
doi: 10.1080/08927014.2011.582642
15 Morrison W B. Influence of silver on structure and properties of low-carbon steel[J] Mater. Sci. Technol., 1985, 1: 954
doi: 10.1179/mst.1985.1.11.954
16 Chiang W C, Tseng I S, Møller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Mater. Chem. Phys., 2010, 119: 123
doi: 10.1016/j.matchemphys.2009.08.035
17 Shuai C J, Xue L F, Gao C D, et al. Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour[J]. Virtual Phys. Prototy., 2018, 13: 146
doi: 10.1080/17452759.2018.1458991
18 Лянкишев H N, translated by Guo Q W. Manual of Phase Diagrams for Metal Binary Systems[M]. Beijing: Chemical Industry Press, 2009: 15
18 Лянкишев H N著, 郭青蔚 译. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009: 15
19 Swartzendruber L J. The Ag-Fe (silver-iron) system[J]. Bull. Alloy Phase Diagrams, 1984, 5: 560
doi: 10.1007/BF02868316
20 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 396
20 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版, 上海: 上海交通大学出版社, 2010: 396
21 Xuan Y. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel[D]. Beijing: Tsinghua University, 2014
21 轩 阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学, 2014
22 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 408
23 Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
doi: 10.1016/j.scriptamat.2009.09.032
24 Benum S, Nes E. Effect of precipitation on the evolution of cube recrystallisation texture[J]. Acta Mater., 1997, 45: 4593
doi: 10.1016/S1359-6454(97)00157-2
25 Peng X Y, Guo M X, Wang X F, et al. Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169
25 彭祥阳, 郭明星, 汪小锋 等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报, 2015, 51: 169
doi: 10.11900/0412.1961.2014.00276
26 Lu J, Zeng X Q, Ding W J. The Hall-Petch relationship[J]. Light Met., 2008, (8): 59
26 路 君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008, (8): 59
27 Gu Y F, Ro Y, Harada H. Tensile properties of chromium alloyed with silver[J]. Metall. Mater. Trans., 2004, 35A: 3329
28 Yu Y N. Foundation of Materials Science[M]. 2nd Ed., Beijing: Higher Education Press, 2012: 256
28 余永宁. 材料科学基础[M]. 第二版, 北京: 高等教育出版社, 2012: 256
29 Li Y R, Yun Z Z. Materials Physics Introduction[M]. Beijing: Tsinghua University Press, 2001: 312
29 李言荣, 恽正中. 材料物理学概论[M]. 北京: 清华大学出版社, 2001: 312
30 Zhang Y. Effect of heat treatment on the growth behavior of second phase particles in deformed zirconium alloy[D]. Shanghai: Shanghai Jiao Tong University, 2017
30 张 瑶. 热处理条件对形变锆合金第二相粒子长大行为的影响[D]. 上海: 上海交通大学, 2017
31 Du Y Z. Study on Microstructures and mechanical properties of Mg-Zn alloys microaaloyed with Ca and Ce/La[D]. Harbin: Harbin Institute of Technology, 2015
31 杜玉洲. Ca和Ce/La微合金化Mg-Zn合金显微组织及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015
32 Chen L W, Li P A, Liu Z, et al. Effects of trace elements on properties and microstructure of electronic aluminum foil billet[J]. J. Kunming Univ. Sci. Technol. (Nat. Sci.), 2017, 42(1): 14
32 陈亮维, 李平安, 刘 状 等. 微量合金元素对电子铝箔坯料组织与性能的影响[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 14
33 Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy[J]. Chin. J. Mater. Res., 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
33 席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35: 881
34 Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles[J]. Mater. Sci. Eng., 2012, A531: 2
[1] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[2] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[3] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[4] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[5] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[6] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[7] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[8] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[9] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[15] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.