|
|
Ag对奥氏体不锈钢组织和力学性能的影响 |
江浩文1, 彭伟1,2( ), 范增为1, 汪杨鑫1, 刘腾轼1,2, 董瀚1,2 |
1 上海大学 材料科学与工程学院 上海 200444 2 上海大学(浙江)高端装备基础件材料研究院 嘉兴 314100 |
|
Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel |
JIANG Haowen1, PENG Wei1,2( ), FAN Zengwei1, WANG Yangxin1, LIU Tengshi1,2, DONG Han1,2 |
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China |
引用本文:
江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
Haowen JIANG,
Wei PENG,
Zengwei FAN,
Yangxin WANG,
Tengshi LIU,
Han DONG.
Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. Acta Metall Sin, 2024, 60(4): 434-442.
1 |
Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39
|
2 |
Yi R, Ye F, Zhang G G, et al. Current status of research on anti-bacterial stainless steels[J]. Electroplat. Finish., 2015, 34: 635
|
2 |
易 蓉, 叶 峰, 张果戈 等. 抗菌不锈钢研究现状[J]. 电镀与涂饰, 2015, 34: 635
|
3 |
Ma T, Li Y G. Development situation and application prospect of antibacterial stainless steels[J]. Mater. Rep., 2015, 29(13): 98
|
3 |
马 涛, 李运刚. 抗菌不锈钢的发展研究现状及展望[J]. 材料导报, 2015, 29(13): 98
|
4 |
Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, A675: 243
|
5 |
Xi T, Yang C G, Shahzad M B, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Mater. Des., 2015, 87: 303
doi: 10.1016/j.matdes.2015.08.011
|
6 |
Yuan Z, Xi T, Yang C G, et al. Enhancement of strength and ductility by Cu-rich precipitation in Cu-bearing 304L austenitic stainless steel[J]. Mater. Lett., 2020, 272: 127815
doi: 10.1016/j.matlet.2020.127815
|
7 |
Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater[J]. Int. Biodeterior. Biodegrad., 2016, 110: 199
doi: 10.1016/j.ibiod.2016.03.026
|
8 |
Li M J, Nan L, Xu D K, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. J. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1016/j.jmst.2014.11.016
|
9 |
Yokota T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Tech. Rep., 2002, 46: 37
|
10 |
Yang S M, Chen Y C, Pan Y T, et al. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2016, C63: 376
|
11 |
Liao K H, Ou K L, Cheng H C, et al. Effect of silver on antibacterial properties of stainless steel[J]. Appl. Surf. Sci., 2010, 256: 3642
doi: 10.1016/j.apsusc.2010.01.001
|
12 |
Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 539
doi: 10.1007/s40195-014-0085-8
|
13 |
Mo J Q, Feng G H, Zhang W, et al. Effects of Ag on microstructure and properties and its precipitation behavior in antibacterial stainless steel[J]. China Metall., 2022, 32(8): 62
|
13 |
莫金强, 冯光宏, 张 威 等. Ag对抗菌不锈钢组织性能的影响及其析出行为[J]. 中国冶金, 2022, 32(8): 62
|
14 |
Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27: 449
doi: 10.1080/08927014.2011.582642
|
15 |
Morrison W B. Influence of silver on structure and properties of low-carbon steel[J] Mater. Sci. Technol., 1985, 1: 954
doi: 10.1179/mst.1985.1.11.954
|
16 |
Chiang W C, Tseng I S, Møller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Mater. Chem. Phys., 2010, 119: 123
doi: 10.1016/j.matchemphys.2009.08.035
|
17 |
Shuai C J, Xue L F, Gao C D, et al. Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour[J]. Virtual Phys. Prototy., 2018, 13: 146
doi: 10.1080/17452759.2018.1458991
|
18 |
Лянкишев H N, translated by Guo Q W. Manual of Phase Diagrams for Metal Binary Systems[M]. Beijing: Chemical Industry Press, 2009: 15
|
18 |
Лянкишев H N著, 郭青蔚 译. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009: 15
|
19 |
Swartzendruber L J. The Ag-Fe (silver-iron) system[J]. Bull. Alloy Phase Diagrams, 1984, 5: 560
doi: 10.1007/BF02868316
|
20 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 396
|
20 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版, 上海: 上海交通大学出版社, 2010: 396
|
21 |
Xuan Y. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel[D]. Beijing: Tsinghua University, 2014
|
21 |
轩 阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学, 2014
|
22 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 408
|
23 |
Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
doi: 10.1016/j.scriptamat.2009.09.032
|
24 |
Benum S, Nes E. Effect of precipitation on the evolution of cube recrystallisation texture[J]. Acta Mater., 1997, 45: 4593
doi: 10.1016/S1359-6454(97)00157-2
|
25 |
Peng X Y, Guo M X, Wang X F, et al. Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169
|
25 |
彭祥阳, 郭明星, 汪小锋 等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报, 2015, 51: 169
doi: 10.11900/0412.1961.2014.00276
|
26 |
Lu J, Zeng X Q, Ding W J. The Hall-Petch relationship[J]. Light Met., 2008, (8): 59
|
26 |
路 君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008, (8): 59
|
27 |
Gu Y F, Ro Y, Harada H. Tensile properties of chromium alloyed with silver[J]. Metall. Mater. Trans., 2004, 35A: 3329
|
28 |
Yu Y N. Foundation of Materials Science[M]. 2nd Ed., Beijing: Higher Education Press, 2012: 256
|
28 |
余永宁. 材料科学基础[M]. 第二版, 北京: 高等教育出版社, 2012: 256
|
29 |
Li Y R, Yun Z Z. Materials Physics Introduction[M]. Beijing: Tsinghua University Press, 2001: 312
|
29 |
李言荣, 恽正中. 材料物理学概论[M]. 北京: 清华大学出版社, 2001: 312
|
30 |
Zhang Y. Effect of heat treatment on the growth behavior of second phase particles in deformed zirconium alloy[D]. Shanghai: Shanghai Jiao Tong University, 2017
|
30 |
张 瑶. 热处理条件对形变锆合金第二相粒子长大行为的影响[D]. 上海: 上海交通大学, 2017
|
31 |
Du Y Z. Study on Microstructures and mechanical properties of Mg-Zn alloys microaaloyed with Ca and Ce/La[D]. Harbin: Harbin Institute of Technology, 2015
|
31 |
杜玉洲. Ca和Ce/La微合金化Mg-Zn合金显微组织及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015
|
32 |
Chen L W, Li P A, Liu Z, et al. Effects of trace elements on properties and microstructure of electronic aluminum foil billet[J]. J. Kunming Univ. Sci. Technol. (Nat. Sci.), 2017, 42(1): 14
|
32 |
陈亮维, 李平安, 刘 状 等. 微量合金元素对电子铝箔坯料组织与性能的影响[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 14
|
33 |
Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy[J]. Chin. J. Mater. Res., 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
|
33 |
席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35: 881
|
34 |
Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles[J]. Mater. Sci. Eng., 2012, A531: 2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|