金属学报, 2024, 60(4): 434-442 DOI: 10.11900/0412.1961.2022.00496

研究论文

Ag对奥氏体不锈钢组织和力学性能的影响

江浩文1, 彭伟,1,2, 范增为1, 汪杨鑫1, 刘腾轼1,2, 董瀚1,2

1 上海大学 材料科学与工程学院 上海 200444

2 上海大学(浙江)高端装备基础件材料研究院 嘉兴 314100

Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel

JIANG Haowen1, PENG Wei,1,2, FAN Zengwei1, WANG Yangxin1, LIU Tengshi1,2, DONG Han1,2

1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China

通讯作者: 彭 伟,PengWei1688@shu.edu.cn,主要从事钢铁材料基础研究与工程技术研发工作

责任编辑: 毕淑娟

收稿日期: 2022-10-08   修回日期: 2023-03-26  

基金资助: 上海市军民融合发展专项资金项目(2020-jmrh1-kj31)

Corresponding authors: PENG Wei, associate professor, Tel: 17621133366, E-mall:PengWei1688@shu.edu.cn

Received: 2022-10-08   Revised: 2023-03-26  

Fund supported: Shanghai Military Civilian Integration Development Special Fund(2020-jmrh1-kj31)

作者简介 About authors

江浩文,男,1998年生,硕士生

摘要

为深入了解Ag在不锈钢中的赋存与踪迹及其对微观组织和力学性能的影响,通过OM、SEM、二次离子质谱仪(SIMS)、EBSD和室温拉伸实验等测试手段研究了Ag含量对奥氏体不锈钢组织、织构和力学性能的影响规律。SIMS分析表明,Ag在奥氏体不锈钢中主要以Ag单质和Ag x S及Ag x N等化合物形式存在,主要分布于晶界处,少量分布于晶内。当Ag含量(质量分数)由0增加至0.062%时,奥氏体不锈钢的晶粒尺寸逐渐减小,平均晶粒尺寸由126 μm减小至47 μm,这是由于再结晶形核过程中粗大的Ag单质和Ag x S及Ag x N等化合物颗粒刺激再结晶形核(particle stimulated nucleation,简称PSN效应),而细小的Ag单质和Ag x S及Ag x N等化合物颗粒阻碍再结晶晶粒长大。EBSD结果表明,304、304Ag-1和304Ag-2不锈钢试样的最大极密度分别为3.24、2.71和2.22,表明Ag可以减弱奥氏体不锈钢的各向异性。随着Ag含量增加,奥氏体不锈钢的屈服强度和抗拉强度呈下降趋势,延伸率则呈上升趋势,且含Ag 304不锈钢与轧向呈0°、45°和90°方向的强度和延伸率一致性优于304不锈钢。在{111}〈110〉滑移系下晶粒的Schmid因子平均值随着Ag含量的增加而增大,晶粒中处于“软取向”的晶粒占比增多。

关键词: 含Ag奥氏体不锈钢; Ag的赋存踪迹; 力学性能; 再结晶; 晶粒取向

Abstract

Austenitic stainless steels have wide applications due to their excellent properties, such as high strength, corrosion resistance, and superior workability. 304 stainless steel (304SS) is one of the most popular austenitic stainless steels. With a growing emphasis on healthcare, the antibacterial property of the materials becomes increasingly important. Ag is added to type 304 stainless steels to obtain an expected antibacterial property and reduce the occurrence of bacterial contamination. With the development of technology, previous research on Ag-bearing stainless steel was mainly concerned on its antibacterial properties, mechanical properties, and corrosion resistance. However, the microstructures of Ag-bearing stainless steels, especially the occurrence and distribution of Ag, have not been studied intensively. The present work studies the effects of Ag content on the microstructure, texture, and mechanical properties of austenitic stainless steel using OM, SEM, secondary ion mass spectrometer (SIMS), EBSD, and tensile test. SIMS analysis shows that Ag exists in austenitic stainless steel mainly in the form of Ag, Ag x S, and Ag x N compounds, which are mainly distributed at the grain boundaries and less within the grain. During recrystallization, the nucleation rate increases by the stimulation of coarse Ag, Ag x S, and Ag x N compound particles, while the grain growth is hindered by fine Ag, Ag x S, and Ag x N compound particles. Hence, the average grain size of 304, 304Ag-1, and 304Ag-2 stainless steel changes from (126 ± 3) μm to (47 ± 4) μm. The EBSD results show that the maximum pole densities of 304, 304Ag-1, and 304Ag-2 stainless steel samples are 3.24, 2.71, and 2.22, respectively, indicating that Ag can reduce the anisotropy of austenitic stainless steel. The yield strength and tensile strength of austenitic stainless steels decrease with the increase of Ag content, and the elongation increases with the increase of Ag content. Furthermore, strength and elongation consistency of Ag-bearing 304 stainless steel are much better compared to that of 304 steel at the angles of 0°, 45°, and 90° to rolling direction. The phenomenon of high Schmid factor grains surrounding low Schmid factor occurs in austenitic stainless steel, and the average Schmid factor of grains in {111} <110> slip system increases with the increase of Ag content, and the proportion of grains in “soft orientation” increases. Under the given loading stress, Ag-bearing austenitic stainless steel is more prone to deformation.

Keywords: Ag-bearing austenitic stainless steel; occurrence trace of Ag; mechanical property; recrystallization; grain orientation

PDF (3255KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442 DOI:10.11900/0412.1961.2022.00496

JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. Acta Metallurgica Sinica, 2024, 60(4): 434-442 DOI:10.11900/0412.1961.2022.00496

奥氏体不锈钢凭借其良好的冷热加工性能、焊接性和耐蚀性等特点,广泛应用于食品行业、医疗器械、厨卫设备等领域[1,2]。随着抗菌材料在各个领域的使用愈发受到重视以及不锈钢在日常生活中的广泛使用[3],开发高性能、广谱抗菌且低成本的抗菌不锈钢材料已成为当今社会发展的迫切需要。当前抗菌不锈钢的研究对象大多以含Cu不锈钢为主[4~7],但含Cu不锈钢需要抗菌时效处理才能析出具有抗菌作用的富Cu相,且导致材料耐腐蚀性能下降[8]。而含Ag不锈钢无需抗菌时效处理,在工业化生产中具有生产工序简单和降低能耗的明显优势。

含Ag不锈钢最早由Yokota等[9]在不锈钢的基础上通过控制成分以及连铸工艺,研发出2种含Ag抗菌不锈钢。随着技术的发展,关于Ag含量对奥氏体不锈钢抗菌性能、力学性能和耐蚀性能影响的研究已有较系统的研究报道[10,11]。然而,对含Ag奥氏体不锈钢的微观组织,特别是富Ag相的存在形式和分布,尚缺乏深入的研究报道。Xuan等[12]在304不锈钢中添加0.27% (质量分数)的Ag,确定纳米尺度的富Ag相为从基体中析出的析出相,Ag析出相与奥氏体在相界处存在(11¯1)γ//(2¯00)Ag[1¯10]γ//[011]Ag的位相关系;莫金强等[13]指出,Ag在材料中主要有2种存在形式,即尺寸为几纳米到几十纳米的富Ag相和尺寸为几百纳米到几微米的Ag颗粒聚集物,但未具体指出富Ag相的赋存与踪迹。此外,关于Ag元素的添加对钢力学性能的影响规律有着相反的研究结果报道。Huang等[14]和Morrison[15]指出,在钢中添加Ag,可以通过沉淀强化和晶粒细化来提高强度和韧性;而另有研究[16]发现,Ag在含Ag 316L奥氏体不锈钢基体表面以小颗粒的形式析出,并降低其力学性能。关于Ag元素对不锈钢力学性能的影响仍然缺乏明确、系统的研究结论。综上所述,研究Ag元素的添加对奥氏体不锈钢微观结构和力学性能的影响,尤其是对其析出行为的影响,可为含Ag不锈钢在实际冶炼过程中成分设计和微观组织调控提供理论指导,从而促进含Ag奥氏体不锈钢板材的工程化应用。

本工作通过在奥氏体不锈钢中添加不同含量的Ag,利用光学显微镜(OM)、扫描电镜(SEM)、二次离子质谱仪(SIMS)及电子背散射衍射(EBSD)测试等手段,初步探索了Ag在奥氏体不锈钢中的存在形式以及Ag对奥氏体不锈钢组织、织构和力学性能的影响规律,旨在更多地了解含Ag奥氏体不锈钢的微观组织,揭示Ag对奥氏体不锈钢力学性能的影响机制。

1 实验方法

实验所用材料为不同Ag含量的304奥氏体不锈钢。采用中频感应炉熔炼,浇铸成235 mm × 235 mm的方锭,铸锭经1180℃保温8 h后锻造成80 mm × 260 mm × 3600 mm的板材;在1250℃保温1.5 h后进行热轧,开轧温度1240℃,终轧温度1150℃,终轧厚度为3.8 mm;最后冷轧成3 mm厚的奥氏体不锈钢板。冷轧钢板经1150℃固溶处理10 min,水冷,以保证完全奥氏体化。不锈钢具体化学成分见表1

表1   不同Ag含量不锈钢的化学成分 (mass fraction / %)

Table 1  Chemical compositions of stainless steels with different Ag contents

SampleCSiMnPSCrNiCuMoAgFe
3040.0560.4041.140.03830.009417.478.090.02890.001Bal.
304Ag-10.0390.1791.230.02000.010018.269.370.01980.0090.034Bal.
304Ag-20.0390.1791.330.01980.007418.069.590.01990.0040.062Bal.

新窗口打开| 下载CSV


采用D8 Advance型X射线衍射仪(XRD)对不锈钢进行物相分析,测量角度2θ = 30°~90°,扫描速率为2°/mm。拉伸实验按GB/T 228.1—2010《金属材料拉伸实验第1部分:室温实验方法》标准,在MTS C45.305万能拉伸试验机上进行,应变速率为1.67 × 10-3 s-1。拉伸试样分别与轧向呈0° (轧向RD)、45°和90° (横向TD)夹角,尺寸如图1所示。试样经研磨抛光后,采用65% (质量分数)的HNO3溶液进行电解刻蚀10 s,在DM 2700M光学显微镜和Sigma 300场发射SEM (附带能谱(EDS)和EBSD)进行组织观察。EBSD观察时,测试加速电压为20 kV,步长为0.35 μm。Ag元素的赋存与踪迹采用ToF-SIMS 5-100型SIMS进行分析,入射粒子为30 keV Bi3+的一次粒子束,入射角均为45°,扫描区域为500 μm × 500 μm。平均晶粒尺寸根据GB/T 6394—2017,采用直线截点法测量。

图1

图1   拉伸试样示意图

Fig.1   Schematic of tensile sample (unit: mm)


2 实验结果及讨论

2.1 Ag304不锈钢微观组织的影响

图2可知,不同Ag含量不锈钢的XRD谱只呈现出奥氏体的衍射峰,说明合金经固溶处理后已完全奥氏体化。图3为不同Ag含量不锈钢的OM像。可见黑色小颗粒主要分布在奥氏体晶界(如图3箭头所示),少量分布于晶粒内部。随着Ag含量的增加,含Ag奥氏体不锈钢再结晶晶粒尺寸逐渐减小。经测量,未添加Ag的304不锈钢试样的平均晶粒尺寸为(126 ± 3) μm,显微晶粒度为3.0,304Ag-1和304Ag-2不锈钢试样的平均晶粒尺寸分别为(61 ± 3)和(47 ± 4) μm,显微晶粒度分别为5.0和6.0,结果表明含Ag奥氏体不锈钢的晶粒尺寸随着Ag含量的增加而减小,这与文献[15,17]研究结果一致。

图2

图2   不同Ag含量不锈钢的XRD谱

Fig.2   XRD spectra of stainless steels with different Ag contents


图3

图3   不同Ag含量不锈钢的OM像

Fig.3   OM images of 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels (Arrows show spherical particles)


图4为304Ag-1和304Ag-2不锈钢试样的SEM像。可见304Ag-1和304Ag-2不锈钢试样的晶粒内部以及晶界上分布有亮色的颗粒。通过EDS分析(表2),颗粒A、C和D为含Ag的团簇状颗粒,颗粒B为不含Ag的方形颗粒。根据Ag-Fe二元合金相图[18,19],可知Ag的固溶度随温度的降低有所减小,故含Ag奥氏体不锈钢在固溶处理时会发生脱溶转变。Xuan等[12]确定了在含Ag的304不锈钢中Ag相与基体存在一定的取向关系,且Ag的点阵常数为0.40857 nm,奥氏体点阵常数为0.36468 nm[20],计算得出错配度为10.7%,所以含Ag相与基体两相之间是共格或半共格相界。因此,含Ag相趋于形成球形粒子,以取得最小界面面积,即其界面能最小。

图4

图4   304Ag-1和304Ag-2不锈钢的SEM像

Fig.4   SEM images of 304Ag-1 (a) and 304Ag-2 (b) stainless steels (Inset shows the high magnified image)


表2   图4中颗粒A~D的EDS结果 (mass fraction / %)

Table 2  EDS results of particles A-D in Fig.4

PointCSiTiCrMnFeNiAg
A7.590.300.1917.571.3757.3610.085.54
B5.560.301.7718.591.4661.3510.97-
C7.610.320.3017.601.2756.2410.046.62
D7.590.170.5216.221.1154.727.9711.70

新窗口打开| 下载CSV


由于Ag的原子序数大于Fe,在背散射电子模式下,基体中较亮的颗粒为含Ag颗粒,尺寸从几纳米到几微米不等(图4b)。Xuan等[12]通过Thermo-Calc计算表明,在1150℃时,Ag在304奥氏体不锈钢中的固溶度为0.005%,远小于Ag在304Ag-1和304Ag-2不锈钢试样中的添加量,而且Ag与其他合金元素,如Cr、Ni等,不易形成化合物[21],很难析出如此高含量的富Ag相,并长大到微米量级。因此,OM像观察到的黑色斑点以及SEM观察到的大尺寸富Ag相为未固溶的含Ag相颗粒。

对含Ag不锈钢试样进行EDS面扫描(图5),发现除富Ag颗粒处存在Ag元素的明显偏聚外,其余合金元素基本呈均匀分布。由于EDS的分辨率有限,面扫描结果可能受到仪器的影响,分布的Ag元素可能是仪器噪点,利用SIMS进一步对Ag元素的赋存与踪迹进行观察。图6为304Ag-2不锈钢试样的SIMS结果。可知,含Ag不锈钢试样中的含Ag颗粒包括单质Ag以及Ag x S、Ag x N等化合物。因此,结合SEM和SIMS结果,认为Ag在奥氏体不锈钢中主要以未固溶的Ag单质以及Ag x S、Ag x N等化合物的形式存在,并主要分布于晶界处,少量分布于晶内。

图5

图5   304Ag-2不锈钢的SEM像和EDS面扫描结果

Fig.5   SEM image and corresponding EDS mappings of 304Ag-2 stainless steel


图6

图6   304Ag-2不锈钢含Ag颗粒成分二次离子质谱(SIMS)

Fig.6   Secondary ion mass spectrometry (SIMS) of Ag (a), Ag x N (b), and Ag x S (c) particles in 304Ag-2 stainless steel (M / Z—mass-to-charge ratio)


图7为在负离子模式下,304Ag-1和304Ag-2不锈钢试样表面SIMS二维元素分布图。从图中可以看出,Ag、S等元素主要偏聚于晶界附近,少量偏聚于晶内,且随着Ag含量的增加,含Ag相颗粒尺寸略有增大。这是由于晶界结构比晶内结构疏松,使得畸变能存在差别,或由于空位的存在,使得Ag原子处在晶内的能量比处在晶界的能量要高,因此在热力学的作用下,Ag原子自发向晶界处偏聚。固溶处理时,为降低总界面能,Ag元素通过扩散使含Ag颗粒聚集长大(粗化),其扩散驱动力主要是因为大颗粒的自由能低于小颗粒[20]

图7

图7   304Ag-1和304Ag-2不锈钢表面SIMS二维元素分布图

Fig.7   Two-dimensional element distributions in SIMS of 304Ag-1 (a) and 304Ag-2 (b) stainless steels


随着Ag含量的增加,基体中Ag单质、Ag x S和Ag x N等化合物的数量逐渐增加。当不锈钢试样基体内的第二相粒子(Ag单质、Ag x S和Ag x N等化合物)尺寸达到临界尺寸(λc)以上时刺激再结晶形核,即粒子诱发形核 (PSN)效应[22~24],导致含Ag不锈钢的平均晶粒尺寸减小。再结晶晶粒尺寸(Drec)满足下式[25]

Drec=1N3

式中,N为单位体积内满足第二相粒子尺寸d ≥ λc的形核点数。随着Ag含量的增加,由于PSN效应形成的N增多,相应的Drec减小,所以奥氏体不锈钢晶粒尺寸明显减小(图3)。同时,d < λc的第二相粒子,对于再结晶晶粒长大具有一定的阻碍作用,最终使得合金再结晶晶粒细小均匀。

2.2 Ag304不锈钢力学性能的影响

图8为不同Ag含量不锈钢沿3个方向拉伸的工程应力-应变曲线。表3为304、304Ag-1和304Ag-2不锈钢沿3个方向拉伸的力学性能。可以看出,随着Ag含量从0增加至0.062%,不锈钢沿3个方向的抗拉强度和屈服强度均不断降低。前述中Ag含量增加导致晶粒细化,根据Hall-Petch公式[26],晶粒尺寸的减小有助于强度的提高,但又有研究[16]表明,Ag的软化作用可以降低不锈钢的抗拉强度和屈服强度。说明含Ag不锈钢试样中细晶强化作用对强度的贡献小于Ag的软化作用,软化作用占主导地位,使含Ag不锈钢试样的强度随Ag含量的增加而下降。此外,随着Ag含量的增加,不锈钢的延伸率增大,这一结果与Morrison[15]和Gu等[27]的研究一致。这是由于Ag的添加可以通过晶粒细化来改善延伸性[28],且Ag单质和Ag x S及Ag x N等化合物颗粒相对于基体属于软韧相,材料受到一定的外力时,会与基体协同产生塑性变形,提高延伸率[20]

图8

图8   不同Ag含量不锈钢沿不同方向的工程应力-应变曲线

Fig.8   Engineering stress-strain curves of stainless steels with different Ag contents in different directions

(a) 0°, rolling direction (RD)

(b) 45°

(c) 90°, transeverse direction (TD)


表3   不同Ag含量不锈钢在不同拉伸方向的力学性能

Table 3  Mechanical properties of stainless steels with different Ag contents in different directions

DirectionMaterialRm / MPaRp0.2 / MPaA / %
0° (RD)30473324177
304Ag-162323380
304Ag-259222181
45°30469022373
304Ag-161122380
304Ag-258521981
90° (TD)30470323580
304Ag-161523081
304Ag-259822381

Note:Rm—ultimate tensile strength, Rp0.2—yield strength, A—elongation

新窗口打开| 下载CSV


2.3 Ag304不锈钢织构的影响

图9为固溶处理后不同Ag含量不锈钢试样RD、TD和法向(ND)反极图。可以看出,试样具有较稳定的晶粒取向。304不锈钢试样的晶粒取向主要集中于〈112〉//ND,其次是靠近〈111〉//RD (图9a),最大极密度为3.24;而304Ag-1和304Ag-2不锈钢试样的晶粒取向以晶向〈101〉//ND居多,其次是晶向〈111〉//RD,最大极密度分别为2.71和2.22。

图9

图9   不同Ag含量不锈钢轧向(RD)、横向(TD)和法向(ND)的反极图

Fig.9   Inverse pole figures of RD, TD, and ND of 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels (ND—normal direction)


表3力学性能可知,织构引起了轻微的各向异性。304不锈钢TD方向的抗拉强度小于RD方向。其原因是304不锈钢属于fcc结构,{111}是其密堆积晶面,也是滑移面[29]。在外加载荷下{111}晶面容易在〈111〉方向上发生滑移,释放内部切应力并使晶粒发生塑性变形。在304不锈钢试样中已经有靠近〈111〉并平行于RD的织构组分,即有部分晶粒的〈111〉方向与RD基本平行。当沿着RD方向拉伸时,这部分晶粒的{111}滑移面簇与拉伸方向近似平行,滑移面内分切应力很小,{111}滑移系不易在这部分晶粒中启动。所以微观上晶粒发生塑性变形需要更高的驱动力,在宏观上则表现为材料的抗拉(屈服)强度的提高。

由最大极密度可知,织构强度304 > 304Ag-1 > 304Ag-2。第二相粒子偏聚在位错及晶界等晶体缺陷处,会阻碍位错运动、晶界迁移和晶粒转动[20,30],使晶粒取向变化[31]和再结晶织构的形成[32]变得困难。由SIMS结果可知,Ag单质和Ag x S及Ag x N等化合物粒子作为第二相粒子主要偏聚在晶界处,阻碍了位错运动,导致其产生更弱的晶粒取向特征,而织构的存在使材料的力学性能产生各向异性[33]。因此,含Ag奥氏体不锈钢的织构强度较低,从而各个方向的力学性能一致性较好。

此外,由于不同取向的晶粒滑移系开动的难易程度不同,织构较弱的试样有多种不同取向的晶粒,因此有多种位错滑移的可能。每种取向的晶粒协调变形的能力不同,在综合作用下表现为:织构较弱的试样协调变形的能力稍微增强,因此随着Ag含量的增加,织构减弱,不锈钢试样协调变形的能力增强,晶粒取向易发生变形,材料的强度逐渐降低。

由Schmid定律[34]可知,晶粒Schmid因子能够一定程度反映晶粒开始变形的难易程度。图1011为{111}〈110〉滑移系下晶粒的Schmid因子和频率分布直方图。可以看出,304、304Ag-1和304Ag-2不锈钢试样晶粒都具有较高的Schmid因子,且存在Schmid因子较高晶粒(图10红色)包围Schmid因子较低晶粒(图10浅黄色)的现象。304Ag-1和304Ag-2不锈钢试样在{111}和〈110〉滑移系下的Schmid因子基本呈增长趋势(图11bc),这表明Ag的添加可以使滑移系易开动,塑性变形开动阻力小。

图10

图10   不同Ag含量不锈钢在{111}〈110〉滑移系下的晶粒Schmid因子分布

Fig.10   Schmid factor distributions of grains in 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels with different Ag contents under {111}〈110〉 slip systems


图11

图11   不同Ag含量不锈钢在{111}〈110〉滑移系下晶粒Schmid因子频率分布直方图

Fig.11   Frequency distribution histograms of Schmid factor of grains in 304 (a), 304Ag-1 (b), and 304Ag-2 (c) stainless steels with different Ag contents under {111}〈110〉slip systems


根据晶粒Schmid因子频率分布直方图统计出,304、304Ag-1和304Ag-2不锈钢试样在{111}〈110〉滑移系下晶粒Schmid因子平均值均不低于0.43 (图11),这表明3种奥氏体不锈钢试样均具有良好的变形能力,且随着Ag含量的增加,晶粒的平均Schmid因子也逐渐增大,说明304Ag-2不锈钢试样中处于“软取向”的晶粒占绝大多数。根据Schmid定律可知,当作用在晶粒滑移面上沿滑移方向的分切应力达到某一临界值时,晶粒便开始滑移,对多晶体而言即发生屈服现象。含Ag奥氏体不锈钢试样的平均Schmid因子越大,在{111}滑移面上分切应力越大,晶粒内部的滑移系开动所需的外加应力越小,不锈钢试样表现出来的宏观强度也就越小。这与之前从织构角度分析得到的结论以及宏观的应力-应变曲线吻合。

3 结论

(1) 随着Ag含量的增加,304奥氏体不锈钢的平均晶粒尺寸减小,304、304Ag-1和304Ag-2不锈钢试样的平均晶粒尺寸分别为(126 ± 3)、(61 ± 3)和(47 ± 4) μm。

(2) Ag在奥氏体不锈钢中主要以Ag单质、Ag x S和Ag x N等化合物的形式存在,主要分布于晶界处,少量分布于晶内;固溶处理后,未固溶的Ag单质和Ag x S及Ag x N等化合物粗大颗粒(dλc)会刺激再结晶形核(PSN效应),而细小的Ag单质和Ag x S及Ag x N等化合物颗粒(d < λc)则阻碍再结晶晶粒长大,进一步细化晶粒。

(3) 随着Ag含量的增加,含Ag 304不锈钢的强度降低,而延伸率则略微增加,且含Ag 304不锈钢与轧向呈0°、45°和90°方向的强度和延伸率一致性优于304不锈钢。

(4) 随着Ag含量的增加,“软取向”的晶粒占比增多,在给定加载应力下,含Ag奥氏体不锈钢更易发生形变。

参考文献

Lo K H, Shek C H, Lai J K L.

Recent developments in stainless steels

[J]. Mater. Sci. Eng., 2009, R65: 39

[本文引用: 1]

Yi R, Ye F, Zhang G G, et al.

Current status of research on anti-bacterial stainless steels

[J]. Electroplat. Finish., 2015, 34: 635

[本文引用: 1]

易 蓉, 叶 峰, 张果戈 .

抗菌不锈钢研究现状

[J]. 电镀与涂饰, 2015, 34: 635

[本文引用: 1]

Ma T, Li Y G.

Development situation and application prospect of antibacterial stainless steels

[J]. Mater. Rep., 2015, 29(13): 98

[本文引用: 1]

马 涛, 李运刚.

抗菌不锈钢的发展研究现状及展望

[J]. 材料导报, 2015, 29(13): 98

[本文引用: 1]

Xi T, Shahzad M B, Xu D K, et al.

Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

[J]. Mater. Sci. Eng., 2016, A675: 243

[本文引用: 1]

Xi T, Yang C G, Shahzad M B, et al.

Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel

[J]. Mater. Des., 2015, 87: 303

DOI      URL    

Yuan Z, Xi T, Yang C G, et al.

Enhancement of strength and ductility by Cu-rich precipitation in Cu-bearing 304L austenitic stainless steel

[J]. Mater. Lett., 2020, 272: 127815

DOI      URL    

Lou Y T, Lin L, Xu D K, et al.

Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater

[J]. Int. Biodeterior. Biodegrad., 2016, 110: 199

DOI      URL     [本文引用: 1]

Li M J, Nan L, Xu D K, et al.

Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water

[J]. J. Mater. Sci. Technol., 2015, 31: 243

DOI      [本文引用: 1]

Tap water is one of the most commonly used water resources in our daily life. However, the increasing water contamination and the health risk caused by pathogenic bacteria, such as <em>Staphylococcus aureus</em> and <em>Escherichia coli</em> have attracted more attention. The mutualism of different pathogenic bacteria may diminish antibacterial effect of antibacterial agents. It was found that materials used for making pipe and tap played one of the most important roles in promoting bacterial growth. This paper is to report the performance of an innovative type 304 Cu-bearing stainless steel (304CuSS) against microbes in tap water. The investigation methodologies involved were means of heterotrophic plate count, contact angle measurements, scanning electron microscopy for observing the cell and subtract surface morphology, atomic absorption spectrometry for copper ions release study, and confocal laser scanning microscopy used for examining live/dead bacteria on normal 304 stainless steel and 304CuSS. It was found that the surface free energy varied after being immersed in tap water with polar component and Cu ions release. The results showed 304CuSS could effectively kill most of the planktonic bacteria (max 95.9% antibacterial rate), and consequently inhibit bacterial biofilms formation on the surface, contributing to the reduction of pathogenic risk to the surrounding environments.

Yokota T, Tochihara M, Ohta M.

Silver dispersed stainless steel with antibacterial property

[J]. Kawasaki Steel Tech. Rep., 2002, 46: 37

[本文引用: 1]

Yang S M, Chen Y C, Pan Y T, et al.

Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel

[J]. Mater. Sci. Eng., 2016, C63: 376

[本文引用: 1]

Liao K H, Ou K L, Cheng H C, et al.

Effect of silver on antibacterial properties of stainless steel

[J]. Appl. Surf. Sci., 2010, 256: 3642

DOI      URL     [本文引用: 1]

Xuan Y, Zhang C, Fan N Q, et al.

Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel

[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 539

DOI      URL     [本文引用: 3]

Mo J Q, Feng G H, Zhang W, et al.

Effects of Ag on microstructure and properties and its precipitation behavior in antibacterial stainless steel

[J]. China Metall., 2022, 32(8): 62

[本文引用: 1]

莫金强, 冯光宏, 张 威 .

Ag对抗菌不锈钢组织性能的影响及其析出行为

[J]. 中国冶金, 2022, 32(8): 62

[本文引用: 1]

Huang C F, Chiang H J, Lan W C, et al.

Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms

[J]. Biofouling, 2011, 27: 449

DOI      URL     [本文引用: 1]

Morrison W B.

Influence of silver on structure and properties of low-carbon steel

[J] Mater. Sci. Technol., 1985, 1: 954

DOI      URL     [本文引用: 3]

Chiang W C, Tseng I S, Møller P, et al.

Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

[J]. Mater. Chem. Phys., 2010, 119: 123

DOI      URL     [本文引用: 2]

Shuai C J, Xue L F, Gao C D, et al.

Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour

[J]. Virtual Phys. Prototy., 2018, 13: 146

DOI      URL     [本文引用: 1]

Лянкишев H N, translated by Guo Q W. Manual of Phase Diagrams for Metal Binary Systems[M]. Beijing: Chemical Industry Press, 2009: 15

[本文引用: 1]

Лянкишев H N著, 郭青蔚 译. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009: 15

[本文引用: 1]

Swartzendruber L J.

The Ag-Fe (silver-iron) system

[J]. Bull. Alloy Phase Diagrams, 1984, 5: 560

DOI      URL     [本文引用: 1]

Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 396

[本文引用: 4]

胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版, 上海: 上海交通大学出版社, 2010: 396

[本文引用: 4]

Xuan Y. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel[D]. Beijing: Tsinghua University, 2014

[本文引用: 1]

轩 阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学, 2014

[本文引用: 1]

Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 408

[本文引用: 1]

Bennett T A, Petrov R H, Kestens L A I.

Effect of particles on texture banding in an aluminium alloy

[J]. Scr. Mater., 2010, 62: 78

DOI      URL    

Benum S, Nes E.

Effect of precipitation on the evolution of cube recrystallisation texture

[J]. Acta Mater., 1997, 45: 4593

DOI      URL     [本文引用: 1]

Peng X Y, Guo M X, Wang X F, et al.

Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys

[J]. Acta Metall. Sin., 2015, 51: 169

[本文引用: 1]

彭祥阳, 郭明星, 汪小锋 .

不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响

[J]. 金属学报, 2015, 51: 169

DOI      [本文引用: 1]

通过拉伸实验, OM, SEM, TEM观察以及EBSD测试等手段研究了不同尺寸粒子对Al-Mg-Si-Cu系合金板材力学性能、组织和织构的影响规律. 结果表明, 随着溶质元素浓度的增加, 合金屈服强度和抗拉强度均不断增加, 但是延伸率却略有降低, 且3个方向存在一定差异. 此外, 合金的平均塑性应变比 r - 也随溶质元素浓度增加而增加. 3种合金基体内的不同尺寸粒子主要为Mg2Si, Al15Mn3Si2和α-Al(Fe, Mn)Si富铁相, 这些粒子尺寸和浓度搭配合理不仅可以诱发粒子刺激形核效应(particle stimulated nucleation, 简称PSN), 而且可有效抑制晶粒长大, 最终使得合金固溶时形成大量细小再结晶晶粒, 而织构组分以旋转立方织构CubeND18, Goss织构{011}<100>, P{011}<122>和Cu{112}<111>为主. 此外, 根据合金成分、热加工工艺以及显微组织间的定量关系提出了不同尺寸粒子影响再结晶形核和长大过程的模型示意图。

Lu J, Zeng X Q, Ding W J.

The Hall-Petch relationship

[J]. Light Met., 2008, (8): 59

[本文引用: 1]

路 君, 曾小勤, 丁文江.

晶粒度与合金强度关系

[J]. 轻金属, 2008, (8): 59

[本文引用: 1]

Gu Y F, Ro Y, Harada H.

Tensile properties of chromium alloyed with silver

[J]. Metall. Mater. Trans., 2004, 35A: 3329

[本文引用: 1]

Yu Y N. Foundation of Materials Science[M]. 2nd Ed., Beijing: Higher Education Press, 2012: 256

[本文引用: 1]

余永宁. 材料科学基础[M]. 第二版, 北京: 高等教育出版社, 2012: 256

[本文引用: 1]

Li Y R, Yun Z Z. Materials Physics Introduction[M]. Beijing: Tsinghua University Press, 2001: 312

[本文引用: 1]

李言荣, 恽正中. 材料物理学概论[M]. 北京: 清华大学出版社, 2001: 312

[本文引用: 1]

Zhang Y. Effect of heat treatment on the growth behavior of second phase particles in deformed zirconium alloy[D]. Shanghai: Shanghai Jiao Tong University, 2017

[本文引用: 1]

张 瑶. 热处理条件对形变锆合金第二相粒子长大行为的影响[D]. 上海: 上海交通大学, 2017

[本文引用: 1]

Du Y Z. Study on Microstructures and mechanical properties of Mg-Zn alloys microaaloyed with Ca and Ce/La[D]. Harbin: Harbin Institute of Technology, 2015

[本文引用: 1]

杜玉洲. Ca和Ce/La微合金化Mg-Zn合金显微组织及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015

[本文引用: 1]

Chen L W, Li P A, Liu Z, et al.

Effects of trace elements on properties and microstructure of electronic aluminum foil billet

[J]. J. Kunming Univ. Sci. Technol. (Nat. Sci.), 2017, 42(1): 14

[本文引用: 1]

陈亮维, 李平安, 刘 状 .

微量合金元素对电子铝箔坯料组织与性能的影响

[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 14

[本文引用: 1]

Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy[J]. Chin. J. Mater. Res., 2021, 35: 881

DOI      [本文引用: 1]

The room temperature creep behavior of Ti-6Al-4V alloy and its effect on subsequent mechanical properties were investigated. The results show that all these factors, such as macro-texture, creep stress level and pre-plastic-strain, have a significant impact on the room temperature creep behavior of Ti-6Al-4V. With the increase of the <0001> peak pole density along the loading direction, the work hardening exponent increases, and the creep exponent becomes smaller, resulting in the better room temperature creep property of Ti-6Al-4V. Enough high stress is the prerequisite for room temperature creep. The obvious room temperature creep behavior can be observed only when the creep stress is not lower than 0.85σy, and the room temperature strain increases with the creep stress level. Pre-plastic-strain can suppress the subsequent room temperature creep of Ti-6Al-4V, no matter the pre-plastic-strain comes from the monotonic loading or from the creep behavior. The pre-plastic-strain can deteriorate the fatigue property of the alloy, although it can reduce subsequent creep strain.

席国强, 邱建科, 雷家峰 . Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35: 881

[本文引用: 1]

Nafisi S, Arafin M A, Collins L, et al.

Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles

[J]. Mater. Sci. Eng., 2012, A531: 2

[本文引用: 1]

/