|
|
GCr15钢滚动轴承疲劳剥落失效过程中一种针状相的形成 |
程胜1,2, 孙阳1,3, 赵文辉3, 栾义坤1,2, 郑成武1,2( ), 李殿中1( ) |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 沈阳工业大学 机械工程学院 沈阳 110870 |
|
Formation of a Needle-Like Structure when Surface Flaking Occurs During the Rolling Contact Fatigue of a GCr15 Bearing |
CHENG Sheng1,2, SUN Yang1,3, ZHAO Wenhui3, LUAN Yikun1,2, ZHENG Chengwu1,2( ), LI Dianzhong1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China |
引用本文:
程胜, 孙阳, 赵文辉, 栾义坤, 郑成武, 李殿中. GCr15钢滚动轴承疲劳剥落失效过程中一种针状相的形成[J]. 金属学报, 2024, 60(4): 425-433.
Sheng CHENG,
Yang SUN,
Wenhui ZHAO,
Yikun LUAN,
Chengwu ZHENG,
Dianzhong LI.
Formation of a Needle-Like Structure when Surface Flaking Occurs During the Rolling Contact Fatigue of a GCr15 Bearing[J]. Acta Metall Sin, 2024, 60(4): 425-433.
1 |
Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel[J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
1 |
孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
2 |
Bhadeshia H K D H. Steels for bearings[J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
|
3 |
Rumpf V. A study on microstructural alterations in white etching cracks, dark etching region, and white etching bands in rolling contacts[D]. Southampton: University of Southampton, 2018
|
4 |
Restrepo S E, Ooi S W, Yan P, et al. Dark etching regions under rolling contact fatigue: A review[J]. Mater. Sci. Technol., 2021, 37: 347
doi: 10.1080/02670836.2021.1916252
|
5 |
Liu H J, Sun J J, Jiang T, et al. Rolling contact fatigue behavior of an ultrahigh carbon steel[J]. Acta Metall. Sin., 2014, 50: 1446
doi: 10.11900/0412.1961.2014.00260
|
5 |
刘宏基, 孙俊杰, 江 涛 等. 一种超高碳钢的滚动接触疲劳研究[J]. 金属学报, 2014, 50: 1446
doi: 10.11900/0412.1961.2014.00260
|
6 |
Fu H W, Rivera-Díaz-Del-Castillo P E J. A unified theory for microstructural alterations in bearing steels under rolling contact fatigue[J]. Acta Mater., 2018, 155: 43
doi: 10.1016/j.actamat.2018.05.056
|
7 |
Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue[J]. J. Tribol., 2009, 131: 041403
|
8 |
Brizmer V, Gabelli A, Vieillard C, et al. An experimental and theoretical study of hybrid bearing micropitting performance under reduced lubrication[J]. Tribol. Trans., 2015, 58: 829
doi: 10.1080/10402004.2015.1021944
|
9 |
Fu H W, Cui Y N, Zhang C, et al. Research progress of rolling contact fatigue of bearing steels[J]. China Metall., 2020, 30(9): 11
|
9 |
付悍巍, 崔一南, 张 弛 等. 轴承钢滚动接触疲劳研究进展[J]. 中国冶金, 2020, 30(9): 11
|
10 |
Maya-Johnson S, Santa J F, Toro A. Dry and lubricated wear of rail steel under rolling contact fatigue—Wear mechanisms and crack growth[J]. Wear, 2017, 380-381: 240
doi: 10.1016/j.wear.2017.03.025
|
11 |
Zhang Y L, Qu S G, Lu F, et al. Microstructures and rolling contact fatigue behaviors of 17Cr2Ni2MoVNb steel under combined ultrasonic surface rolling and shot peening[J]. Int. J. Fatigue, 2020, 141: 105867
doi: 10.1016/j.ijfatigue.2020.105867
|
12 |
Vieillard C. Observation of subsurface rolling contact fatigue cracks in silicon nitride and comparison of their location to Hertzian contact subsurface stresses[J]. Int. J. Fatigue, 2017, 96: 283
doi: 10.1016/j.ijfatigue.2016.12.011
|
13 |
Chang Z, Jia Q, Yuan X, et al. Main failure mode of oil-air lubricated rolling bearing installed in high speed machining[J]. Tribol. Int., 2017, 112: 68
doi: 10.1016/j.triboint.2017.03.024
|
14 |
Rycerz P, Olver A, Kadiric A. Propagation of surface initiated rolling contact fatigue cracks in bearing steel[J]. Int. J. Fatigue, 2017, 97: 29
doi: 10.1016/j.ijfatigue.2016.12.004
|
15 |
He C G, Liu J H, Wang W J, et al. The tribo-fatigue damage transition and mapping for wheel material under rolling-sliding contact condition[J]. Materials, 2019, 12: 4138
doi: 10.3390/ma12244138
|
16 |
Seo J W, Kwon S J, Lee D H, et al. Analysis of contact fatigue crack growth using twin-disc tests and numerical evaluations[J]. Int. J. Fatigue, 2013, 55: 54
doi: 10.1016/j.ijfatigue.2013.05.005
|
17 |
Zaid M, Bonnand V, Doquet V, et al. Fatigue crack growth in bearing steel under cyclic mode II + static biaxial compression[J]. Int. J. Fatigue, 2022, 163: 107074
doi: 10.1016/j.ijfatigue.2022.107074
|
18 |
Nejad R M, Shariati M, Farhangdoost K. Effect of wear on rolling contact fatigue crack growth in rails[J]. Tribol. Int., 2016, 94: 118
doi: 10.1016/j.triboint.2015.08.035
|
19 |
Xu H, Komvopoulos K. A fracture mechanics analysis of asperity cracking due to sliding contact[J]. Int. J. Solids Struct., 2019, 171: 1
doi: 10.1016/j.ijsolstr.2019.05.005
|
20 |
Guo Y B, Yen D W. Hard turning versus grinding—The effect of process-induced residual stress on rolling contact[J]. Wear, 2004, 256: 393
doi: 10.1016/S0043-1648(03)00443-5
|
21 |
Zhang P, Xie L Q, Zhou C Y, et al. Experimental and numerical investigation on fatigue crack growth behavior of commercial pure titanium under I-II mixed mode loading at negative load ratios[J]. Int. J. Fatigue, 2020, 138: 105700
doi: 10.1016/j.ijfatigue.2020.105700
|
22 |
Miao X T, Yu Q, Zhou C Y, et al. Experimental and numerical investigation on fracture behavior of I-II mixed mode crack for commercially pure titanium[J]. Theor. Appl. Fract. Mech., 2018, 96: 202
doi: 10.1016/j.tafmec.2018.04.012
|
23 |
Richard H A, Schramm B, Schirmeisen N H. Cracks on mixed mode loading—Theories, experiments, simulations[J]. Int. J. Fatigue, 2014, 62: 93
doi: 10.1016/j.ijfatigue.2013.06.019
|
24 |
Arakere N K. Gigacycle rolling contact fatigue of bearing steels: A review[J]. Int. J. Fatigue, 2016, 93: 238
doi: 10.1016/j.ijfatigue.2016.06.034
|
25 |
Li H F, Qian C F. Experimental study of I + III mixed mode fatigue crack transformation propagation[J]. Fatigue Fract. Eng. Mater. Struct., 2011, 34: 53
doi: 10.1111/ffe.2011.34.issue-1
|
26 |
Canadinc D, Sehitoglu H, Verzal K. Analysis of surface crack growth under rolling contact fatigue[J]. Int. J. Fatigue, 2008, 30: 1678
doi: 10.1016/j.ijfatigue.2007.11.002
|
27 |
Fletcher D I, Hyde P, Kapoor A. Investigating fluid penetration of rolling contact fatigue cracks in rails using a newly developed full-scale test facility[J]. Proc. Inst. Mech. Eng., 2007, 221F: 35
|
28 |
Evans M H. An updated review: White etching cracks (WECs) and axial cracks in wind turbine gearbox bearings[J]. Mater. Sci. Technol., 2016, 32: 1133
doi: 10.1080/02670836.2015.1133022
|
29 |
Fajdiga G, Glodež S, Kramar J. Pitting formation due to surface and subsurface initiated fatigue crack growth in contacting mechanical elements[J]. Wear, 2007, 262: 1217
doi: 10.1016/j.wear.2006.11.016
|
30 |
Fajdiga G, Sraml M. Fatigue crack initiation and propagation under cyclic contact loading[J]. Eng. Fract. Mech., 2009, 76: 1320
doi: 10.1016/j.engfracmech.2009.02.005
|
31 |
Harada H, Mikami T, Shibata M, et al. Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel[J]. ISIJ Int., 2005, 45: 1897
doi: 10.2355/isijinternational.45.1897
|
32 |
Evans M H, Walker J C, Ma C, et al. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel[J]. Mater. Sci. Eng., 2013, A570: 127
|
33 |
Jiang G H, Li S X, Pu J B, et al. Phase transformation in the subsurface of case carbonitrided bearing steels under rolling contact fatigue[J]. Tribol. Int., 2022, 169: 107468
doi: 10.1016/j.triboint.2022.107468
|
34 |
Su Y S, Li S X, Lu S Y, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J]. Int. J. Fatigue, 2017, 105: 160
doi: 10.1016/j.ijfatigue.2017.08.022
|
35 |
Li S X, Su Y S, Shu X D, et al. Microstructural evolution in bearing steel under rolling contact fatigue[J]. Wear, 2017, 380-381: 146
doi: 10.1016/j.wear.2017.03.018
|
36 |
Guo W, Meng Y F, Zhang X, et al. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization[J]. Acta Mater., 2018, 152: 107
doi: 10.1016/j.actamat.2018.04.013
|
37 |
El Laithy M, Wang L, Harvey T J, et al. Further understanding of rolling contact fatigue in rolling element bearings—A review[J]. Tribol. Int., 2019, 140: 105849
doi: 10.1016/j.triboint.2019.105849
|
38 |
Fu H W, Song W W, Galindo-Nava E I, et al. Strain-induced martensite decay in bearing steels under rolling contact fatigue: Modelling and atomic-scale characterisation[J]. Acta Mater., 2017, 139: 163
doi: 10.1016/j.actamat.2017.08.005
|
39 |
Kang J H, Kim J, Kang J Y, et al. Multiscale study on the dark-etching region due to rolling contact fatigue of 0.57C-bearing steel[J]. Acta Mater., 2022, 226: 117666
doi: 10.1016/j.actamat.2022.117666
|
40 |
Dallago M, Benedetti M, Ancellotti S, et al. The role of lubricating fluid pressurization and entrapment on the path of inclined edge cracks originated under rolling-sliding contact fatigue: Numerical analyses vs. experimental evidences[J]. Int. J. Fatigue, 2016, 92: 517
doi: 10.1016/j.ijfatigue.2016.02.014
|
41 |
Ancellotti S, Fontanari V, Dallago M, et al. A novel experimental procedure to reproduce the load history at the crack tip produced by lubricated rolling sliding contact fatigue[J]. Eng. Fract. Mech., 2018, 192: 129
doi: 10.1016/j.engfracmech.2018.02.020
|
42 |
Warhadpande A, Sadeghi F, Evans R D. Microstructural alterations in bearing steels under rolling contact fatigue part 1—Historical overview[J]. Tribol. Trans., 2013, 56: 349
doi: 10.1080/10402004.2012.754073
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|