Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 425-433    DOI: 10.11900/0412.1961.2023.00005
  研究论文 本期目录 | 过刊浏览 |
GCr15钢滚动轴承疲劳剥落失效过程中一种针状相的形成
程胜1,2, 孙阳1,3, 赵文辉3, 栾义坤1,2, 郑成武1,2(), 李殿中1()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 沈阳工业大学 机械工程学院 沈阳 110870
Formation of a Needle-Like Structure when Surface Flaking Occurs During the Rolling Contact Fatigue of a GCr15 Bearing
CHENG Sheng1,2, SUN Yang1,3, ZHAO Wenhui3, LUAN Yikun1,2, ZHENG Chengwu1,2(), LI Dianzhong1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

程胜, 孙阳, 赵文辉, 栾义坤, 郑成武, 李殿中. GCr15钢滚动轴承疲劳剥落失效过程中一种针状相的形成[J]. 金属学报, 2024, 60(4): 425-433.
Sheng CHENG, Yang SUN, Wenhui ZHAO, Yikun LUAN, Chengwu ZHENG, Dianzhong LI. Formation of a Needle-Like Structure when Surface Flaking Occurs During the Rolling Contact Fatigue of a GCr15 Bearing[J]. Acta Metall Sin, 2024, 60(4): 425-433.

全文: PDF(4504 KB)   HTML
摘要: 

在发生表面剥落的GCr15钢滚动轴承的表面裂纹附近发现了一种针状相,利用SEM、透射Kikuchi衍射(TKD)和TEM等表征手段研究了这种针状相的微观特征,分析了这种针状相的形成机理及其与表面裂纹的相互作用。结果表明,在GCr15钢滚动轴承表面诱发的裂纹附近所形成的针状相是一种特殊的马氏体退化组织。这种针状相是因局部应力作用而形成的细长条状组织,其三维形貌为薄板状,内部存在微观孔洞和等轴状纳米晶。在滚动接触疲劳过程中,表面裂纹会优先沿针状相的微观孔洞扩展,使针状相的形成与表面裂纹的扩展相互促进,加速了轴承表面疲劳剥落的发生。

关键词 GCr15钢滚动接触疲劳表面裂纹针状相    
Abstract

As a form of damage caused by rolling contact, rolling contact fatigue (RCF) can lead to early pitting and flaking on the raceway surface of bearings, which is frequently accompanied by the propagation and fracture of RCF cracks. When the RCF crack is initiated on the raceway surface, large amount of stress, e.g., fluid pressurization, may be exerted close to the crack faces, which can not only accelerate the crack growth and cause rapid failure of the bearing but also lead to local microstructural alternations in the bearing steel. In this study, a needle-like structure was observed close to the cracks with flaking occurring during RCF in a GCr15 rolling bearing. The microstructures of the needle-like structure were analyzed via SEM, transmission Kikuchi diffraction (TKD), and TEM to elucidate its microstructural constitutions and characteristics. Results illustrated that the needle-like structure is a thin plate in three dimension decorated with some microvoids and equiaxed ferrite nanocrystalline formed at the interfaces. The formation of the needle-like structure was attributed to the local stress exerted close to the crack surface during the RCF of the bearings. This structure may be a type of decayed microstructure of the martensitic matrix of the bearing steel. With the increasing RCF stress cycles, the microvoids in the needle-like structure may facilitate the initiation and propagation of surface cracks preferentially, thus accelerating the occurrence of surface fatigue flaking in the bearing.

Key wordsGCr15 bearing steel    rolling contact fatigue    surface crack    needle-like structure
收稿日期: 2023-01-01     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52031013);中国科学院战略性先导科技专项项目(XDC04040203)
通讯作者: 郑成武,cwzheng@imr.ac.cn,主要从事先进钢铁微观组织与转变机理研究;
李殿中,dzli@imr.ac.cn,主要从事特殊钢与特殊钢构件研究
Corresponding author: ZHENG Chengwu, professor, Tel:(024)23971973, E-mail:cwzheng@imr.ac.cn;
LI Dianzhong, professor, Tel:(024)23971281, E-mail:dzli@imr.ac.cn
作者简介: 程 胜,男,1998年生,博士生
图1  GCr15钢失效轴承滚道接触表面及横截面疲劳剥落的形貌
图2  聚焦离子束(FIB)制备含有针状相的TEM试样
图3  GCr15钢失效轴承表面剥落截面的OM像
图4  针状相的SEM像及其垂直截面的TEM像
图5  针状相内部微观结构的TEM分析
图6  针状相不同位置的TEM明场像、选区电子衍射(SAED)花样和透射菊池衍射(TKD)像
图7  单一针状相内部微观结构的TEM像
图8  针状相的三维结构示意图
图9  滚动接触疲劳过程中针状相近邻表面裂纹形成的示意图
1 Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel[J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
1 孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
2 Bhadeshia H K D H. Steels for bearings[J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
3 Rumpf V. A study on microstructural alterations in white etching cracks, dark etching region, and white etching bands in rolling contacts[D]. Southampton: University of Southampton, 2018
4 Restrepo S E, Ooi S W, Yan P, et al. Dark etching regions under rolling contact fatigue: A review[J]. Mater. Sci. Technol., 2021, 37: 347
doi: 10.1080/02670836.2021.1916252
5 Liu H J, Sun J J, Jiang T, et al. Rolling contact fatigue behavior of an ultrahigh carbon steel[J]. Acta Metall. Sin., 2014, 50: 1446
doi: 10.11900/0412.1961.2014.00260
5 刘宏基, 孙俊杰, 江 涛 等. 一种超高碳钢的滚动接触疲劳研究[J]. 金属学报, 2014, 50: 1446
doi: 10.11900/0412.1961.2014.00260
6 Fu H W, Rivera-Díaz-Del-Castillo P E J. A unified theory for microstructural alterations in bearing steels under rolling contact fatigue[J]. Acta Mater., 2018, 155: 43
doi: 10.1016/j.actamat.2018.05.056
7 Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue[J]. J. Tribol., 2009, 131: 041403
8 Brizmer V, Gabelli A, Vieillard C, et al. An experimental and theoretical study of hybrid bearing micropitting performance under reduced lubrication[J]. Tribol. Trans., 2015, 58: 829
doi: 10.1080/10402004.2015.1021944
9 Fu H W, Cui Y N, Zhang C, et al. Research progress of rolling contact fatigue of bearing steels[J]. China Metall., 2020, 30(9): 11
9 付悍巍, 崔一南, 张 弛 等. 轴承钢滚动接触疲劳研究进展[J]. 中国冶金, 2020, 30(9): 11
10 Maya-Johnson S, Santa J F, Toro A. Dry and lubricated wear of rail steel under rolling contact fatigue—Wear mechanisms and crack growth[J]. Wear, 2017, 380-381: 240
doi: 10.1016/j.wear.2017.03.025
11 Zhang Y L, Qu S G, Lu F, et al. Microstructures and rolling contact fatigue behaviors of 17Cr2Ni2MoVNb steel under combined ultrasonic surface rolling and shot peening[J]. Int. J. Fatigue, 2020, 141: 105867
doi: 10.1016/j.ijfatigue.2020.105867
12 Vieillard C. Observation of subsurface rolling contact fatigue cracks in silicon nitride and comparison of their location to Hertzian contact subsurface stresses[J]. Int. J. Fatigue, 2017, 96: 283
doi: 10.1016/j.ijfatigue.2016.12.011
13 Chang Z, Jia Q, Yuan X, et al. Main failure mode of oil-air lubricated rolling bearing installed in high speed machining[J]. Tribol. Int., 2017, 112: 68
doi: 10.1016/j.triboint.2017.03.024
14 Rycerz P, Olver A, Kadiric A. Propagation of surface initiated rolling contact fatigue cracks in bearing steel[J]. Int. J. Fatigue, 2017, 97: 29
doi: 10.1016/j.ijfatigue.2016.12.004
15 He C G, Liu J H, Wang W J, et al. The tribo-fatigue damage transition and mapping for wheel material under rolling-sliding contact condition[J]. Materials, 2019, 12: 4138
doi: 10.3390/ma12244138
16 Seo J W, Kwon S J, Lee D H, et al. Analysis of contact fatigue crack growth using twin-disc tests and numerical evaluations[J]. Int. J. Fatigue, 2013, 55: 54
doi: 10.1016/j.ijfatigue.2013.05.005
17 Zaid M, Bonnand V, Doquet V, et al. Fatigue crack growth in bearing steel under cyclic mode II + static biaxial compression[J]. Int. J. Fatigue, 2022, 163: 107074
doi: 10.1016/j.ijfatigue.2022.107074
18 Nejad R M, Shariati M, Farhangdoost K. Effect of wear on rolling contact fatigue crack growth in rails[J]. Tribol. Int., 2016, 94: 118
doi: 10.1016/j.triboint.2015.08.035
19 Xu H, Komvopoulos K. A fracture mechanics analysis of asperity cracking due to sliding contact[J]. Int. J. Solids Struct., 2019, 171: 1
doi: 10.1016/j.ijsolstr.2019.05.005
20 Guo Y B, Yen D W. Hard turning versus grinding—The effect of process-induced residual stress on rolling contact[J]. Wear, 2004, 256: 393
doi: 10.1016/S0043-1648(03)00443-5
21 Zhang P, Xie L Q, Zhou C Y, et al. Experimental and numerical investigation on fatigue crack growth behavior of commercial pure titanium under I-II mixed mode loading at negative load ratios[J]. Int. J. Fatigue, 2020, 138: 105700
doi: 10.1016/j.ijfatigue.2020.105700
22 Miao X T, Yu Q, Zhou C Y, et al. Experimental and numerical investigation on fracture behavior of I-II mixed mode crack for commercially pure titanium[J]. Theor. Appl. Fract. Mech., 2018, 96: 202
doi: 10.1016/j.tafmec.2018.04.012
23 Richard H A, Schramm B, Schirmeisen N H. Cracks on mixed mode loading—Theories, experiments, simulations[J]. Int. J. Fatigue, 2014, 62: 93
doi: 10.1016/j.ijfatigue.2013.06.019
24 Arakere N K. Gigacycle rolling contact fatigue of bearing steels: A review[J]. Int. J. Fatigue, 2016, 93: 238
doi: 10.1016/j.ijfatigue.2016.06.034
25 Li H F, Qian C F. Experimental study of I + III mixed mode fatigue crack transformation propagation[J]. Fatigue Fract. Eng. Mater. Struct., 2011, 34: 53
doi: 10.1111/ffe.2011.34.issue-1
26 Canadinc D, Sehitoglu H, Verzal K. Analysis of surface crack growth under rolling contact fatigue[J]. Int. J. Fatigue, 2008, 30: 1678
doi: 10.1016/j.ijfatigue.2007.11.002
27 Fletcher D I, Hyde P, Kapoor A. Investigating fluid penetration of rolling contact fatigue cracks in rails using a newly developed full-scale test facility[J]. Proc. Inst. Mech. Eng., 2007, 221F: 35
28 Evans M H. An updated review: White etching cracks (WECs) and axial cracks in wind turbine gearbox bearings[J]. Mater. Sci. Technol., 2016, 32: 1133
doi: 10.1080/02670836.2015.1133022
29 Fajdiga G, Glodež S, Kramar J. Pitting formation due to surface and subsurface initiated fatigue crack growth in contacting mechanical elements[J]. Wear, 2007, 262: 1217
doi: 10.1016/j.wear.2006.11.016
30 Fajdiga G, Sraml M. Fatigue crack initiation and propagation under cyclic contact loading[J]. Eng. Fract. Mech., 2009, 76: 1320
doi: 10.1016/j.engfracmech.2009.02.005
31 Harada H, Mikami T, Shibata M, et al. Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel[J]. ISIJ Int., 2005, 45: 1897
doi: 10.2355/isijinternational.45.1897
32 Evans M H, Walker J C, Ma C, et al. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel[J]. Mater. Sci. Eng., 2013, A570: 127
33 Jiang G H, Li S X, Pu J B, et al. Phase transformation in the subsurface of case carbonitrided bearing steels under rolling contact fatigue[J]. Tribol. Int., 2022, 169: 107468
doi: 10.1016/j.triboint.2022.107468
34 Su Y S, Li S X, Lu S Y, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J]. Int. J. Fatigue, 2017, 105: 160
doi: 10.1016/j.ijfatigue.2017.08.022
35 Li S X, Su Y S, Shu X D, et al. Microstructural evolution in bearing steel under rolling contact fatigue[J]. Wear, 2017, 380-381: 146
doi: 10.1016/j.wear.2017.03.018
36 Guo W, Meng Y F, Zhang X, et al. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization[J]. Acta Mater., 2018, 152: 107
doi: 10.1016/j.actamat.2018.04.013
37 El Laithy M, Wang L, Harvey T J, et al. Further understanding of rolling contact fatigue in rolling element bearings—A review[J]. Tribol. Int., 2019, 140: 105849
doi: 10.1016/j.triboint.2019.105849
38 Fu H W, Song W W, Galindo-Nava E I, et al. Strain-induced martensite decay in bearing steels under rolling contact fatigue: Modelling and atomic-scale characterisation[J]. Acta Mater., 2017, 139: 163
doi: 10.1016/j.actamat.2017.08.005
39 Kang J H, Kim J, Kang J Y, et al. Multiscale study on the dark-etching region due to rolling contact fatigue of 0.57C-bearing steel[J]. Acta Mater., 2022, 226: 117666
doi: 10.1016/j.actamat.2022.117666
40 Dallago M, Benedetti M, Ancellotti S, et al. The role of lubricating fluid pressurization and entrapment on the path of inclined edge cracks originated under rolling-sliding contact fatigue: Numerical analyses vs. experimental evidences[J]. Int. J. Fatigue, 2016, 92: 517
doi: 10.1016/j.ijfatigue.2016.02.014
41 Ancellotti S, Fontanari V, Dallago M, et al. A novel experimental procedure to reproduce the load history at the crack tip produced by lubricated rolling sliding contact fatigue[J]. Eng. Fract. Mech., 2018, 192: 129
doi: 10.1016/j.engfracmech.2018.02.020
42 Warhadpande A, Sadeghi F, Evans R D. Microstructural alterations in bearing steels under rolling contact fatigue part 1—Historical overview[J]. Tribol. Trans., 2013, 56: 349
doi: 10.1080/10402004.2012.754073
[1] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[2] 刘宏基, 孙俊杰, 江涛, 郭生武, 柳永宁, 林鑫. 一种超高碳钢的滚动接触疲劳研究[J]. 金属学报, 2014, 50(12): 1446-1452.
[3] 孟祥宁; 朱苗勇 . 高拉速板坯连铸结晶器液体摩擦机理分析[J]. 金属学报, 2008, 44(10): 1193-1197 .
[4] 窦鹏; 李友国; 梁开明 . 中碳贝氏体支承辊钢低应力牵引滚动接触下的疲劳短裂纹行为[J]. 金属学报, 2005, 41(2): 140-144 .