|
|
连续屈服、高强屈比中锰钢的工艺设计与组织调控 |
张光莹1, 李岩2,3, 黄丽颖4, 定巍1( ) |
1 内蒙古科技大学 材料与冶金学院 包头 014010 2 内蒙古科技大学 稀土产业学院 包头 014010 3 内蒙古科技大学 白云鄂博矿多金属资源综合利用重点实验室 包头 014010 4 河北科技工程职业技术大学 机电工程系 邢台 054000 |
|
Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio |
ZHANG Guangying1, LI Yan2,3, HUANG Liying4, DING Wei1( ) |
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China 2 School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China 3 Key Laboratory of Integrated Exploitation of Bayan-Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China 4 Department of Mechanical and Electrical Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China |
引用本文:
张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
Guangying ZHANG,
Yan LI,
Liying HUANG,
Wei DING.
Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. Acta Metall Sin, 2024, 60(4): 443-452.
1 |
Sun Y, Zheng Q Y, Hu B J, et al. Mechanism of dynamic strain-induced ferrite transformation in a 3Mn-0.2C medium Mn steel[J]. Acta Metall. Sin., 2022, 58: 649
doi: 10.11900/0412.1961.2021.00192
|
1 |
孙 毅, 郑沁园, 胡宝佳 等. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58: 649
|
2 |
Li Y, Wang R X, Wang B F, et al. Influence of silicon addition on intercritical annealing process and tensile properties of medium Mn steel[J]. J. Mater. Sci., 2021, 56: 1783
doi: 10.1007/s10853-020-05330-x
|
3 |
Zhang Y P, Li D Z, Yan Z J, et al. Effect of intercritical annealing process on microstructure and mechanical properties of cold-rolled medium manganese steel[J]. Trans. Mater. Heat Treat., 2021, 42(5):72
|
3 |
张宇鹏, 李大赵, 闫志杰 等. 临界退火工艺对冷轧中锰钢微观组织和力学性能的影响[J]. 材料热处理学报, 2021, 42(5): 72
doi: 10.13289/j.issn.1009-6264.2020-0388
|
4 |
Pan H J, Yu W W, Wei C F, et al. Enhanced hydrogen embrittlement resistance of medium Mn steel by tailoring retained austenite morphology[J]. J. Mater. Eng. Perform., 2023, 32: 712
doi: 10.1007/s11665-022-07118-3
|
5 |
Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling[J]. Acta Metall. Sin., 2018, 54: 859
doi: 10.11900/0412.1961.2017.00315
|
5 |
阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54: 859
|
6 |
Ding W, Jiang H T, Tang D, et al. Mechanical property and retained austenite of low-Si TRIP steel[J]. J. Mater. Eng., 2010, (4): 72
|
6 |
定 巍, 江海涛, 唐 荻 等. 低硅TRIP钢的力学性能及残余奥氏体稳定性研究[J]. 材料工程, 2010, (4): 72
|
7 |
Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning processing to medium Mn steel[J]. Metall. Mater. Trans., 2015, 46A: 27
|
8 |
Liang X K, Fu H, Cui M, et al. Effect of intercritical tempering temperature on microstructure evolution and mechanical properties of high strength and toughness medium manganese steel[J]. Materials, 2022, 15: 2162
doi: 10.3390/ma15062162
|
9 |
Mishra G, Chandan A K. Effect of cold deformation extent and ART annealing duration on the microstructure and mechanical properties of a medium manganese steel[J]. Mater. Chem. Phys., 2021, 271: 124940
doi: 10.1016/j.matchemphys.2021.124940
|
10 |
Ma Y, Song W W, Zhou S X, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel[J]. Metals, 2018, 8: 357
doi: 10.3390/met8050357
|
11 |
Hu B, Tu X, Wang Y, et al. Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review[J] Chin. J. Eng., 2020, 42: 48
|
11 |
胡 斌, 屠 鑫, 王 玉 等. 中锰钢塑性失稳现象的研究进展及未来研究展望[J]. 工程科学学报, 2020, 42: 48
|
12 |
Zhang C, Xiong Z P, Yang D Z, et al. Effect of Mn heterogeneous distribution on microstructures and mechanical properties of quenching and partitioning steels[J]. Acta Metall. Sin., 2024, 60: 69
doi: 10.11900/0412.1961.2022.00315
|
12 |
张 超, 熊志平, 杨德振 等. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60: 69
|
13 |
An X L, Zhang R M, Wu Y X, et al. The role of retained austenite on the stress-strain behaviour of chemically patterned steels[J]. Mater. Sci. Eng., 2022, A831: 142286
|
14 |
Zhang C, Xiong Z P, Yang D Z, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement[J]. Acta Mater., 2022, 235: 118060
doi: 10.1016/j.actamat.2022.118060
|
15 |
Li Z, Wu D. Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels[J]. ISIJ Int., 2006, 46: 121
doi: 10.2355/isijinternational.46.121
|
16 |
Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility[J]. Acta Metall. Sin., 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
|
16 |
邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
|
17 |
Liu C Q. Study on microstructure, mechanical property control and austenite stability of high strength and high plasticity medium manganese steel[D]. Wuhan: Wuhan University of Science and Technology, 2020
|
17 |
刘春泉. 高强高塑性中锰钢组织性能调控及奥氏体稳定性研究[D]. 武汉: 武汉科技大学, 2020
|
18 |
Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
|
19 |
Tsuchiyama T, Sakamoto T, Tanaka S, et al. Control of core-shell type second phase formed via interrupted quenching and intercritical annealing in a medium manganese steel[J]. ISIJ Int., 2020, 60: 2954
doi: 10.2355/isijinternational.ISIJINT-2020-164
|
20 |
Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
|
21 |
Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. J. Mater. Sci. Technol., 2021, 75: 205
doi: 10.1016/j.jmst.2020.10.032
|
22 |
Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel[J]. Acta Metall. Sin., 2018, 54: 1031
|
22 |
赵晓丽, 张永健, 邵成伟 等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54: 1031
doi: 10.11900/0412.1961.2017.00435
|
23 |
Li Y, Du J C, D W, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of medium Mn TRIP steel[J]. J. Iron Steel Res., 2018, 30: 185
|
23 |
李 岩, 杜敬超, 定 巍 等. 临界退火温度对中锰TRIP钢组织和性能的影响[J]. 钢铁研究学报, 2018, 30: 185
|
24 |
Zhang N. Study on mechanical properties and control of original structure before annealing of Al microalloyed medium manganese steel[D] Baotou: Inner Mongolia University of Science & Technology, 2021
|
24 |
张 楠. Al微合金化中锰钢力学性能研究及退火前原始组织控制[D]. 包头: 内蒙古科技大学, 2021
|
25 |
Yang F, Zhou J, Han Y, et al. A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation[J]. Mater. Lett., 2020, 258: 126804
doi: 10.1016/j.matlet.2019.126804
|
26 |
Ye Q Z, Han G, Xu J P, et al. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel[J]. Mater. Sci. Eng., 2022, A831: 142244
|
27 |
Liu C Q, Peng Q C, Xue Z L, et al. Microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn TRIP steels[J]. Materials, 2018, 11: 2242
doi: 10.3390/ma11112242
|
28 |
Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility[J]. Chin. J. Mater. Res., 2019, 33: 927
doi: 10.11901/1005.3093.2019.315
|
28 |
张喜亮, 侯华峰, 刘 涛 等. 一种新型高强塑积异质冷轧中锰钢的力学性能[J]. 材料研究学报, 2019, 33: 927
doi: 10.11901/1005.3093.2019.315
|
29 |
Tian Y Q, Bi W Q, Pan H B, et al. Effect of carbide evolution on Lüders behavior of cold rolled ART 0.1C-7Mn steel[J]. J. Iron Steel Res., 2020, 32: 505
|
29 |
田亚强, 毕文强, 潘红波 等. 碳化物演变对冷轧ART0.1C-7Mn钢Lüders行为影响[J]. 钢铁研究学报, 2020, 32: 505
|
30 |
Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Mater., 2017, 124: 17
doi: 10.1016/j.actamat.2016.10.069
|
31 |
Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing[J]. J. Mater. Sci., 2019, 54: 6565
doi: 10.1007/s10853-018-03291-w
|
32 |
Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
|
33 |
Emadoddin E, Akbarzadeh A, Daneshi G H. Correlation between Lüder strain and retained austenite in TRIP-assisted cold rolled steel sheets[J]. Mater. Sci. Eng., 2007, A447: 174
|
34 |
Ryu J H, Kim J I, Kim H S, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel[J]. Scr. Mater., 2013, 68: 933
doi: 10.1016/j.scriptamat.2013.02.026
|
35 |
Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater. Trans., 2004, 45: 2245
doi: 10.2320/matertrans.45.2245
|
36 |
Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int., 2013, 53: 1224
doi: 10.2355/isijinternational.53.1224
|
37 |
Zhou T P. Study on metastable austenite control and mechanical properties of medium manganese steels with high strength and ductility[D]. Chongqing: Chongqing University, 2020
|
37 |
周天鹏. 高强塑性中锰钢亚稳奥氏体调控与力学性能研究[D]. 重庆: 重庆大学, 2020
|
38 |
Ma J W. A study on the microscopic/macroscopic mechanisms and the weakening approaches of the plastic instability phenomena in a 7MnCA medium Mn steel[D]. Shanghai: Shanghai Jiao Tong University, 2020
|
38 |
马佳伟. 中锰钢7MnCA塑性失稳行为的宏微观力学机制及弱化方法研究[D]. 上海: 上海交通大学, 2020
|
39 |
Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions[J]. Mater. Sci. Eng., 2018, A729: 496
|
40 |
Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process[J]. Acta Mater., 2019, 174: 131
doi: 10.1016/j.actamat.2019.05.043
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|