Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 443-452    DOI: 10.11900/0412.1961.2022.00498
  研究论文 本期目录 | 过刊浏览 |
连续屈服、高强屈比中锰钢的工艺设计与组织调控
张光莹1, 李岩2,3, 黄丽颖4, 定巍1()
1 内蒙古科技大学 材料与冶金学院 包头 014010
2 内蒙古科技大学 稀土产业学院 包头 014010
3 内蒙古科技大学 白云鄂博矿多金属资源综合利用重点实验室 包头 014010
4 河北科技工程职业技术大学 机电工程系 邢台 054000
Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio
ZHANG Guangying1, LI Yan2,3, HUANG Liying4, DING Wei1()
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
2 School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China
3 Key Laboratory of Integrated Exploitation of Bayan-Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
4 Department of Mechanical and Electrical Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
引用本文:

张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
Guangying ZHANG, Yan LI, Liying HUANG, Wei DING. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. Acta Metall Sin, 2024, 60(4): 443-452.

全文: PDF(2854 KB)   HTML
摘要: 

为了探究残余奥氏体稳定性对于中锰钢塑性失稳的影响和作用规律,本工作针对中锰钢(0.2C-5Mn-0.5Si-1.5Al,质量分数,%),设计了预处理加临界退火的热处理工艺,得到2种残余奥氏体,并对其成分、形貌及稳定性进行了分析,进而讨论了残余奥氏体对力学性能的影响。结果表明,珠光体+马氏体+铁素体的多相初始组织退火后能够获得2种不同稳定性的残余奥氏体:源自珠光体具有较高Mn含量的薄膜状残余奥氏体;主要源自于马氏体具有适当Mn含量的块状残余奥氏体。块状残余奥氏体稳定性较差,在塑性变形初始阶段发生相变,有助于消除Lüders应变;薄膜状残余奥氏体稳定性较高,在变形中后期发生相变,有助于获得高强塑性。含双稳定性残余奥氏体的试样不仅保持了高抗拉强度(> 1000 MPa)和高断裂延伸率(> 30%),而且还具有连续屈服和高强屈比的特点。

关键词 中锰钢残余奥氏体塑性失稳力学性能    
Abstract

Researches have focused on the development of lightweight and high-performance steel materials to ensure automobile safety. Medium manganese steel is a potential candidate owing to its excellent mechanical properties and low production cost. However, the problem of plastic instability (Lüders strain, Portevin-Le Chatelier effect) is one of the main factors restricting the development of medium manganese steel. Therefore, resolving the plastic instability of medium manganese steel is a prerequisite for its development and hence to ensure the benefits of its mechanical qualities. Many studies have found that the stability of retained austenite is directly related to the plastic instability of medium manganese steel. In this work, cold rolled low-carbon medium manganese steel is selected, and multi-stable retained austenite is obtained by designing pretreatment and critical annealing process. The phase transformation of the retained austenite with different stability in each stage of the tensile process and its influence on the mechanical properties are studied. The results show that the microstructure containing pearlite + ferrite + martensite is obtained after pretreatment of medium manganese steel. After annealing, pearlite transformed into filmy retained austenite and ferrite phase; while martensite transformed into blocky retained austenite. Mn content in the filmy retained austenite is higher than that in the blocky retained austenite, making the filmy retained austenite more stable than the blocky one. The blocky retained austenite has poor stability, and phase transformation occurs at the initial stage of plastic deformation, eliminating Lüders strain. In contrast, the filmy retained austenite has high stability, and phase transformation occurs in the middle and late deformation, contributing toward its high strength and plasticity. The specimens containing double-stable retained austenite not only maintain the tensile strength (> 1000 MPa) and high fracture elongations (> 30%), but also have the characteristics of continuous yield and high strength yield ratio.

Key wordsmedium manganese steel    retained austenite    plastic instability    mechanical property
收稿日期: 2022-10-19     
ZTFLH:  TG142.1  
基金资助:内蒙古自然科学基金项目(2020LH05026);河北省教育厅科学技术研究项目(ZD2022034)
通讯作者: 定 巍,adingwei@126.com,主要从事先进高强钢的开发与研究
Corresponding author: DING Wei, associate professor, Tel: 15034713948, E-mail: adingwei@126.com
作者简介: 张光莹,男,1996年生,硕士生
图 1  热处理工艺示意图
图2  A730-3和PA730-5试样退火前后的SEM像和奥氏体转变示意图
图3  A730-3和PA730-5试样的残余奥氏体晶粒尺寸分布图和平均晶粒尺寸
图4  PA730-5试样退火后块状和薄膜状残余奥氏体的TEM像、SAED花样及EDS分析
图5  PA730-5试样拉伸断裂后距离断口不同位置的取样位置示意图及SEM像
图6  A730-3和PA730-5试样拉伸前和拉伸断裂后断口处的XRD谱
图7  A730-3和PA730-5试样的工程应力-应变曲线
Sample

YS

MPa

UTS

MPa

TE

%

UTS / YS

UTS × TE

GPa·%

A730-39221041431.1244.76
PA730-56521025341.5734.85
表1  A730-3和PA730-5试样退火后的力学性能
图8  A730-3和PA730-5试样的加工硬化指数曲线
图9  PA730-5试样断后的TEM像和Lüders带运动示意图
1 Sun Y, Zheng Q Y, Hu B J, et al. Mechanism of dynamic strain-induced ferrite transformation in a 3Mn-0.2C medium Mn steel[J]. Acta Metall. Sin., 2022, 58: 649
doi: 10.11900/0412.1961.2021.00192
1 孙 毅, 郑沁园, 胡宝佳 等. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58: 649
2 Li Y, Wang R X, Wang B F, et al. Influence of silicon addition on intercritical annealing process and tensile properties of medium Mn steel[J]. J. Mater. Sci., 2021, 56: 1783
doi: 10.1007/s10853-020-05330-x
3 Zhang Y P, Li D Z, Yan Z J, et al. Effect of intercritical annealing process on microstructure and mechanical properties of cold-rolled medium manganese steel[J]. Trans. Mater. Heat Treat., 2021, 42(5):72
3 张宇鹏, 李大赵, 闫志杰 等. 临界退火工艺对冷轧中锰钢微观组织和力学性能的影响[J]. 材料热处理学报, 2021, 42(5): 72
doi: 10.13289/j.issn.1009-6264.2020-0388
4 Pan H J, Yu W W, Wei C F, et al. Enhanced hydrogen embrittlement resistance of medium Mn steel by tailoring retained austenite morphology[J]. J. Mater. Eng. Perform., 2023, 32: 712
doi: 10.1007/s11665-022-07118-3
5 Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling[J]. Acta Metall. Sin., 2018, 54: 859
doi: 10.11900/0412.1961.2017.00315
5 阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54: 859
6 Ding W, Jiang H T, Tang D, et al. Mechanical property and retained austenite of low-Si TRIP steel[J]. J. Mater. Eng., 2010, (4): 72
6 定 巍, 江海涛, 唐 荻 等. 低硅TRIP钢的力学性能及残余奥氏体稳定性研究[J]. 材料工程, 2010, (4): 72
7 Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning processing to medium Mn steel[J]. Metall. Mater. Trans., 2015, 46A: 27
8 Liang X K, Fu H, Cui M, et al. Effect of intercritical tempering temperature on microstructure evolution and mechanical properties of high strength and toughness medium manganese steel[J]. Materials, 2022, 15: 2162
doi: 10.3390/ma15062162
9 Mishra G, Chandan A K. Effect of cold deformation extent and ART annealing duration on the microstructure and mechanical properties of a medium manganese steel[J]. Mater. Chem. Phys., 2021, 271: 124940
doi: 10.1016/j.matchemphys.2021.124940
10 Ma Y, Song W W, Zhou S X, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel[J]. Metals, 2018, 8: 357
doi: 10.3390/met8050357
11 Hu B, Tu X, Wang Y, et al. Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review[J] Chin. J. Eng., 2020, 42: 48
11 胡 斌, 屠 鑫, 王 玉 等. 中锰钢塑性失稳现象的研究进展及未来研究展望[J]. 工程科学学报, 2020, 42: 48
12 Zhang C, Xiong Z P, Yang D Z, et al. Effect of Mn heterogeneous distribution on microstructures and mechanical properties of quenching and partitioning steels[J]. Acta Metall. Sin., 2024, 60: 69
doi: 10.11900/0412.1961.2022.00315
12 张 超, 熊志平, 杨德振 等. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60: 69
13 An X L, Zhang R M, Wu Y X, et al. The role of retained austenite on the stress-strain behaviour of chemically patterned steels[J]. Mater. Sci. Eng., 2022, A831: 142286
14 Zhang C, Xiong Z P, Yang D Z, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement[J]. Acta Mater., 2022, 235: 118060
doi: 10.1016/j.actamat.2022.118060
15 Li Z, Wu D. Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels[J]. ISIJ Int., 2006, 46: 121
doi: 10.2355/isijinternational.46.121
16 Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility[J]. Acta Metall. Sin., 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
16 邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
17 Liu C Q. Study on microstructure, mechanical property control and austenite stability of high strength and high plasticity medium manganese steel[D]. Wuhan: Wuhan University of Science and Technology, 2020
17 刘春泉. 高强高塑性中锰钢组织性能调控及奥氏体稳定性研究[D]. 武汉: 武汉科技大学, 2020
18 Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
19 Tsuchiyama T, Sakamoto T, Tanaka S, et al. Control of core-shell type second phase formed via interrupted quenching and intercritical annealing in a medium manganese steel[J]. ISIJ Int., 2020, 60: 2954
doi: 10.2355/isijinternational.ISIJINT-2020-164
20 Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
21 Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. J. Mater. Sci. Technol., 2021, 75: 205
doi: 10.1016/j.jmst.2020.10.032
22 Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel[J]. Acta Metall. Sin., 2018, 54: 1031
22 赵晓丽, 张永健, 邵成伟 等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54: 1031
doi: 10.11900/0412.1961.2017.00435
23 Li Y, Du J C, D W, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of medium Mn TRIP steel[J]. J. Iron Steel Res., 2018, 30: 185
23 李 岩, 杜敬超, 定 巍 等. 临界退火温度对中锰TRIP钢组织和性能的影响[J]. 钢铁研究学报, 2018, 30: 185
24 Zhang N. Study on mechanical properties and control of original structure before annealing of Al microalloyed medium manganese steel[D] Baotou: Inner Mongolia University of Science & Technology, 2021
24 张 楠. Al微合金化中锰钢力学性能研究及退火前原始组织控制[D]. 包头: 内蒙古科技大学, 2021
25 Yang F, Zhou J, Han Y, et al. A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation[J]. Mater. Lett., 2020, 258: 126804
doi: 10.1016/j.matlet.2019.126804
26 Ye Q Z, Han G, Xu J P, et al. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel[J]. Mater. Sci. Eng., 2022, A831: 142244
27 Liu C Q, Peng Q C, Xue Z L, et al. Microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn TRIP steels[J]. Materials, 2018, 11: 2242
doi: 10.3390/ma11112242
28 Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility[J]. Chin. J. Mater. Res., 2019, 33: 927
doi: 10.11901/1005.3093.2019.315
28 张喜亮, 侯华峰, 刘 涛 等. 一种新型高强塑积异质冷轧中锰钢的力学性能[J]. 材料研究学报, 2019, 33: 927
doi: 10.11901/1005.3093.2019.315
29 Tian Y Q, Bi W Q, Pan H B, et al. Effect of carbide evolution on Lüders behavior of cold rolled ART 0.1C-7Mn steel[J]. J. Iron Steel Res., 2020, 32: 505
29 田亚强, 毕文强, 潘红波 等. 碳化物演变对冷轧ART0.1C-7Mn钢Lüders行为影响[J]. 钢铁研究学报, 2020, 32: 505
30 Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Mater., 2017, 124: 17
doi: 10.1016/j.actamat.2016.10.069
31 Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing[J]. J. Mater. Sci., 2019, 54: 6565
doi: 10.1007/s10853-018-03291-w
32 Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
33 Emadoddin E, Akbarzadeh A, Daneshi G H. Correlation between Lüder strain and retained austenite in TRIP-assisted cold rolled steel sheets[J]. Mater. Sci. Eng., 2007, A447: 174
34 Ryu J H, Kim J I, Kim H S, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel[J]. Scr. Mater., 2013, 68: 933
doi: 10.1016/j.scriptamat.2013.02.026
35 Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater. Trans., 2004, 45: 2245
doi: 10.2320/matertrans.45.2245
36 Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int., 2013, 53: 1224
doi: 10.2355/isijinternational.53.1224
37 Zhou T P. Study on metastable austenite control and mechanical properties of medium manganese steels with high strength and ductility[D]. Chongqing: Chongqing University, 2020
37 周天鹏. 高强塑性中锰钢亚稳奥氏体调控与力学性能研究[D]. 重庆: 重庆大学, 2020
38 Ma J W. A study on the microscopic/macroscopic mechanisms and the weakening approaches of the plastic instability phenomena in a 7MnCA medium Mn steel[D]. Shanghai: Shanghai Jiao Tong University, 2020
38 马佳伟. 中锰钢7MnCA塑性失稳行为的宏微观力学机制及弱化方法研究[D]. 上海: 上海交通大学, 2020
39 Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions[J]. Mater. Sci. Eng., 2018, A729: 496
40 Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process[J]. Acta Mater., 2019, 174: 131
doi: 10.1016/j.actamat.2019.05.043
[1] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[2] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[3] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[4] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[5] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[6] 张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
[7] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[8] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[9] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[14] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[15] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.