Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 627-638    DOI: 10.11900/0412.1961.2022.00295
  研究论文 本期目录 | 过刊浏览 |
超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响
熊毅1,2(), 栾泽伟1, 马云飞1,3, 厉勇4, 查小琴5
1 河南科技大学 材料科学与工程学院 洛阳 471023
2 河南科技大学 有色金属新材料与先进加工技术省部共建协同创新中心 洛阳 471023
3 中航光电科技股份有限公司 洛阳 471003
4 钢铁研究总院 特殊钢研究所 北京 100081
5 中国船舶重工集团第725研究所 洛阳 471000
Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel
XIONG Yi1,2(), LUAN Zewei1, MA Yunfei1,3, LI Yong4, ZHA Xiaoqin5
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Provincial and Ministerial Co-constrction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
3 AVIC Jonhon Optronic Technology Co. Ltd., Luoyang 471003, China
4 Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
5 Luoyang Ship Material Research Institute, Luoyang 471000, China
引用本文:

熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
Yi XIONG, Zewei LUAN, Yunfei MA, Yong LI, Xiaoqin ZHA. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. Acta Metall Sin, 2024, 60(5): 627-638.

全文: PDF(4415 KB)   HTML
摘要: 

300M钢因其具有超高强度和优异塑韧性,常作为起落架的首选材料。但其在“高温、高湿、高盐”的海洋服役环境下易发生腐蚀疲劳失效,而表面强化可以有效提高其抗腐蚀疲劳性能。本工作采用超音速微粒轰击(SFPB)技术对300M超高强度钢进行表面纳米化处理,系统研究了SFPB对300M钢在3.5%NaCl溶液中的腐蚀疲劳行为的影响规律,并对300M钢腐蚀疲劳后的表面形貌、微观组织演变和残余应力松弛进行表征。结果表明,300M钢经SFPB后表层晶粒细化至纳米级,形成梯度纳米结构的同时还存在着高幅值残余压应力。在相同的加载应力水平下,SFPB有效提高了300M钢的腐蚀疲劳寿命。腐蚀疲劳后300M钢表层晶粒尺寸仍处于纳米量级,加载应力水平的增加使次表层位错密度显著增加的同时形变孪晶数量增多。在腐蚀疲劳过程中,300M钢表层由于SFPB诱导产生的残余压应力发生不同程度的松弛现象,残余应力松弛程度随着加载应力水平的增加而明显增加。

关键词 超音速微粒轰击300M钢表面纳米化腐蚀疲劳微观组织残余应力松弛    
Abstract

Although 300M steel is one of the preferred materials for aircraft landing gears and other key load-bearing components in aviation because of its ultra-high strength and excellent ductility, its susceptibility to corrosion fatigue fracture during service in “high temperature, high humidity, and high salt” marine environments is a significant safety hazard. Surface strengthening can effectively improve the corrosion fatigue resistance of materials, thereby improving the reliability of components and extending their service life. Hence, the surface nanocrystallization of 300M ultra-high strength steel via supersonic fine particle bombardment (SFPB) and its effect on the corrosion fatigue behavior of the material in 3.5%NaCl solution was systematically investigated and the surface morphology, microstructure evolution, and residual stress relaxation of 300M steel after corrosion fatigue were characterized. After SFPB, the grain size near the surface was observed to have reduced to the nanoscale, forming gradient nanostructures and high amplitude residual compressive stress. The SFPB treatment effectively improved the corrosion fatigue life of 300M steel at the same loading-stress level. After corrosion fatigue, the grain size of the SFPB-treated 300M steel remained at the nanoscale near the surface, and the increase in the loading stress level caused a significant increase in the dislocation density in the subsurface layer and the number of deformation twins. During the corrosion fatigue loading, the residual compressive stress induced by SFPB in the surface layer of 300M steel relaxed to various degrees, with the degree of residual stress relaxation being significantly higher for higher loading stress levels.

Key wordssupersonic fine particle bombardment    300M steel    surface nanocrystallization    corrosion fatigue    microstructure    residual stress relaxation
收稿日期: 2022-06-15     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(U1804146);国家自然科学基金项目(52111530068);河南省外专引智计划项目(HNGD2020009)
通讯作者: 熊 毅,xiongy@haust.edu.cn,主要从事先进钢铁材料研究
Corresponding author: XIONG Yi, professor, Tel: (0379)64231269, E-mail: xiongy@haust.edu.cn
作者简介: 熊 毅,男,1975年生,教授,博士
图1  腐蚀疲劳试样尺寸示意图
图2  超音速微粒轰击(SFPB)处理前后300M钢腐蚀疲劳前微观组织形貌的SEM像
图3  SFPB处理的300M钢腐蚀疲劳前表层和次表层微观组织形貌的TEM像
图4  SFPB处理前后300M钢腐蚀疲劳前的纳米压痕硬度
图5  SFPB处理前后300M钢腐蚀疲劳应力-寿命(S-N)曲线
图6  SFPB处理前后300M钢腐蚀疲劳断口形貌的SEM像(最大载荷σmax = 400 MPa,未处理试样腐蚀疲劳寿命N = 6.67 × 105 cyc,SFPB处理试样腐蚀疲劳寿命N' = 1.18 × 106 cyc,下同)
图7  SFPB处理前后300M钢腐蚀疲劳后的表面形貌、表面粗糙度以及三维轮廓图(σmax = 400 MPa)
图8  SFPB处理前后300M钢腐蚀疲劳前后的XRD谱
Treatment

ρ

1014 m-2

ε

10-4

Without SFPB, before CF2.086.0
With SFPB, before CF9.0655.8
With SFPB, σmax = 400 MPa8.7643.6
With SFPB, σmax = 800 MPa7.8130.9
表1  SFPB处理前后300M钢腐蚀疲劳前后的表层位错密度和微观应变
图9  SFPB处理300M钢不同载荷下腐蚀疲劳后微观组织的TEM像
1 Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Mater. Sci. Eng., 2011, A528: 4967
2 Skubisz P, Sinczak J. Properties of direct-quenched aircraft forged component made of ultrahigh-strength steel 300M[J]. Aircr. Eng. Aerosp. Technol., 2018, 90: 713
3 Mu Z T, Tan X M, Liu Z G. Corrosion damage failure law analysis and corrosion control for naval aircraft in servicing[J]. Equip. Environ. Eng., 2009, 6(1): 43
3 穆志韬, 谭晓明, 刘志国. 海军现役飞机的腐蚀损伤失效分析及腐蚀防护[J]. 装备环境工程, 2009, 6(1): 43
4 Ebara R, Fukushima Y, Nakagawa S, et al. Nitriding effect on corrosion fatigue strength of low alloy steel in 1% HCl aqueous solution[J]. Adv. Mater. Res., 2014, 891-892: 674
5 Bag A, Lévesque M, Brochu M. Effect of shot peening on short crack propagation in 300M steel[J]. Int. J. Fatigue, 2020, 131: 105346
doi: 10.1016/j.ijfatigue.2019.105346
6 Zhao W D, Liu D X, Zhang X H, et al. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process[J]. Int. J. Fatigue, 2019, 121: 30
doi: 10.1016/j.ijfatigue.2018.11.017
7 Zhao W D, Liu D X, Zhang X H, et al. The effect of electropulsing-assisted ultrasonic nanocrystal surface modification on the microstructure and properties of 300M steel[J]. Surf. Coat. Technol., 2020, 397: 125994
doi: 10.1016/j.surfcoat.2020.125994
8 Zhao W D, Liu D X, Liu J, et al. The effects of laser-assisted ultrasonic nanocrystal surface modification on the microstructure and mechanical properties of 300M steel[J]. Adv. Eng. Mater., 2021, 23: 2001203
doi: 10.1002/adem.v23.3
9 Dang J Q, Zhang H, An Q L, et al. Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process[J]. Surf. Coat. Technol., 2021, 421: 127380
doi: 10.1016/j.surfcoat.2021.127380
10 Dang J Q, An Q L, Lian G H, et al. Surface modification and its effect on the tensile and fatigue properties of 300M steel subjected to ultrasonic surface rolling process[J]. Surf. Coat. Technol., 2021, 422: 127566
doi: 10.1016/j.surfcoat.2021.127566
11 Wu Y H. Strengthen experimental study of high strength steel 40CrNi2Si2MoVA based on laser shock processing[J]. Adv. Mater. Res., 2013, 774-776: 1122
12 Pistochini T E, Hill M R. Effect of laser peening on fatigue performance in 300M steel[J]. Fatigue Fract. Eng. Mater. Struct., 2011, 34: 521
doi: 10.1111/ffe.2011.34.issue-7
13 Zhang H P, Cai Z Y, Chi J X, et al. Microstructural evolution, mechanical behaviors and strengthening mechanism of 300M steel subjected to multi-pass laser shock peening[J]. Opt. Laser Technol., 2022, 148: 107726
doi: 10.1016/j.optlastec.2021.107726
14 Xiong T Y, Liu Z W, Li Z C, et al. Supersonic fine particles bombarding: A novel surface nanocrystallization technology[J]. Mater. Rev., 2003, 17(3): 69
14 熊天英, 刘志文, 李智超 等. 超音速微粒轰击金属表面纳米化新技术[J]. 材料导报, 2003, 17(3): 69
15 Li H M, Li M Q, Liu Y G, et al. Research progress in nanocrystalline microstructure, mechanical properties and nanocrystallization mechanism of titanium alloys via surface mechanical treatment[J]. Chin. J. Nonferrous Met., 2015, 25: 641
15 李慧敏, 李淼泉, 刘印刚 等. 钛合金表层机械处理的纳米化组织、力学性能与机理研究进展[J]. 中国有色金属学报, 2015, 25: 642
16 Zhou T, Xiong Y, Chen Z G, et al. Effect of surface nano-crystallization induced by supersonic fine particles bombarding on microstructure and mechanical properties of 300M steel[J]. Surf. Coat. Technol., 2021, 421: 127381
doi: 10.1016/j.surfcoat.2021.127381
17 Ma Y F, Xiong Y, Chen Z G, et al. Microstructure evolution and properties of gradient nanostructures subjected to laser shock processing in 300M ultrahigh-strength steel[J]. Steel Res. Int., 2022, 93: 2100434
doi: 10.1002/srin.v93.2
18 Zhang Y X, Yang J H, Ge L L, et al. Research on mechanism of surface nanocrystalline layer in 2219 Al alloy induced by supersonic fine particles bombarding[J]. Int. J. Eng. Res. Afr., 2016, 24: 1
19 Zhang L Y, Ma A B, Jiang J H, et al. Electrochemical corrosion properties of the surface layer produced by supersonic fine-particles bombarding on low-carbon steel[J]. Surf. Coat. Technol., 2013, 232: 412
doi: 10.1016/j.surfcoat.2013.05.043
20 Wang Z, Wang J G, Chen Z Y, et al. Effect of Ce addition on modifying the microstructure and achieving a high elongation with a relatively high strength of as-extruded AZ80 magnesium alloy[J]. Materials, 2018, 12: 76
doi: 10.3390/ma12010076
21 Liu H B, Wei X X, Xing S L, et al. Effect of stress shot peening on the residual stress field and microstructure of nanostructured Mg-8Gd-3Y alloy[J]. J. Mater. Res. Technol., 2021, 10: 74
doi: 10.1016/j.jmrt.2020.11.085
22 Liu C S, Liu D X, Zhang X H, et al. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process[J]. J. Mater. Sci. Technol., 2019, 35: 1555
doi: 10.1016/j.jmst.2019.03.036
23 Kim J C, Cheong S K, Noguchi H. Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel[J]. Int. J. Fatigue, 2013, 56: 114
doi: 10.1016/j.ijfatigue.2013.07.001
24 Xu X C, Liu D X, Zhang X H, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. J. Mater. Sci. Technol., 2020, 40: 88
doi: 10.1016/j.jmst.2019.08.030
25 Huang H W, Wang Z B, Liu L, et al. Formation of a gradient nanostructured surface layer on a martensitic stainless steel and its effects on the electrochemical corrosion behavior[J]. Acta Metall. Sin., 2015, 51: 513
25 黄海威, 王镇波, 刘 莉 等. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J]. 金属学报, 2015, 51: 513
doi: 10.11900/0412.1961.2014.00556
26 Yue Y, Dai L Y, Zhong H, et al. Effect of microstructure on high cycle fatigue behavior of Ti-20Zr-6.5Al-4V alloy[J]. J. Alloys Compd., 2017, 696: 663
doi: 10.1016/j.jallcom.2016.11.303
27 Chen Y N, Xiong Y, Fan M X, et al. Fatigue fracture analysis of TC11 titanium alloy at different temperatures[J]. Trans. Mater. Heat Treat., 2019, 40(8): 61
27 陈艳娜, 熊 毅, 范梅香 等. TC11钛合金在不同温度下的疲劳断裂分析[J]. 材料热处理学报, 2019, 40(8): 61
28 Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy[J]. J. Alloys Compd., 2017, 723: 826
doi: 10.1016/j.jallcom.2017.06.310
29 Brandstetter S, Derlet P M, Van Petegem S, et al. Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations[J]. Acta Mater., 2008, 56: 165
doi: 10.1016/j.actamat.2007.09.007
30 Markmann J, Yamakov V, Weissmüller J. Validating grain size analysis from X-ray line broadening: A virtual experiment[J]. Scr. Mater., 2008, 59: 15
doi: 10.1016/j.scriptamat.2008.02.056
31 Wu Y L, Xiong Y, Liu W, et al. Effect of supersonic fine particle bombardment on microstructure and fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy at different temperatures[J]. Surf. Coat. Technol., 2021, 421: 127473
doi: 10.1016/j.surfcoat.2021.127473
32 Chen Z G, Wu Y L, Xue Q X, et al. Effect of laser shock peening on microstructure and properties of TC11 titanium alloy with lamellar microstructure[J]. Surf. Technol., 2022, 51(7): 343
32 陈正阁, 武永丽, 薛全喜 等. 激光冲击强化对片层TC11钛合金组织和性能的影响[J]. 表面技术, 2022, 51(7): 343
33 Gao Y K, Yao M, Yang O X, et al. Influence of carburization followed by shot peening on fatigue property of 20CrMnTi steel[J]. J. Mater. Eng. Perform., 2005, 14: 591
doi: 10.1361/105994905X64495
34 Zhao H S, Chen G Q, Gai P T, et al. Residual stress relaxation and re-shot-peening process of wet shot-peened titanium alloy during tensile fatigue load[J]. J. Mater. Eng., 2020, 48(5): 136
34 赵慧生, 陈国清, 盖鹏涛 等. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136
doi: 10.11868/j.issn.1001-4381.2019.000080
35 Prabhakaran S, Kulkarni A, Vasanth G, et al. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel[J]. Appl. Surf. Sci., 2018, 428: 17
doi: 10.1016/j.apsusc.2017.09.138
36 Kou Y, Du Y L. Effects of laser shock peening on corrosion fatigue behavior of 2Cr13 stainless steel[J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 452: 022014
37 Liu D, Liu D X, Zhang X H, et al. Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process[J]. Mater. Sci. Eng., 2018, A726: 69
38 Huang H W, Wang Z B, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Mater., 2015, 87: 150
doi: 10.1016/j.actamat.2014.12.057
39 Gangloff R P, Ives M B. Environment-Induced Cracking of Metals[M]. Wisconsin, USA: Elsevier, 1990: 55
40 Müller M. Theoretical considerations on corrosion fatigue crack initiation[J]. Metall. Trans., 1982, 13A: 649
41 Schnubel D, Huber N. The influence of crack face contact on the prediction of fatigue crack propagation in residual stress fields[J]. Eng. Fract. Mech., 2012, 84: 15
doi: 10.1016/j.engfracmech.2011.12.008
42 Lu J Z, Qi H, Luo K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corros. Sci., 2014, 80: 53
doi: 10.1016/j.corsci.2013.11.003
43 Starker P, Wohlfahrt H, Macherauch E. Subsurface crack initiation during fatigue as a result of residual stresses[J]. Fatigue Fract. Eng. Mater. Struct., 1979, 1: 319
doi: 10.1111/ffe.1979.1.issue-3
44 Zhang C H, Hu K, Zheng M, et al. Effect of surface nanocrystallization on fatigue properties of Ti-6Al-4V alloys with bimodal and lamellar structure[J]. Mater. Sci. Eng., 2021, A813: 141142
[1] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[2] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[3] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[4] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[8] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.