|
|
放电等离子烧结Ni20Cr-xAl合金的高温氧化行为 |
刘丞济, 孙文瑶( ), 陈明辉, 王福会 |
东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819 |
|
High-Temperature Oxidation Behavior of Spark Plasma Sintered Ni20Cr-xAl Alloys |
LIU Chengji, SUN Wenyao( ), CHEN Minghui, WANG Fuhui |
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China |
引用本文:
刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
Chengji LIU,
Wenyao SUN,
Minghui CHEN,
Fuhui WANG.
High-Temperature Oxidation Behavior of Spark Plasma Sintered Ni20Cr-xAl Alloys[J]. Acta Metall Sin, 2024, 60(4): 485-494.
1 |
Yancheshmeh D A, Esmailian M, Shirvani K. Microstructural and oxidation behavior of NiCrAl super alloy containing hafnium at high temperature[J]. Int. J. Hydrogen Energy, 2018, 43: 5365
doi: 10.1016/j.ijhydene.2017.08.039
|
2 |
Llewelyn S C H, Chater R J, Jones N G, et al. The effect of systematic variation of Ni:Co ratio on the oxidation behaviour of γ-γ′ Ni-Co-Al-Ti-Cr alloys[J]. Corros. Sci., 2021, 178: 109087
doi: 10.1016/j.corsci.2020.109087
|
3 |
Ju J, Shen Z, Kang M D, et al. On the preferential grain boundary oxidation of a Ni-Co-based superalloy[J]. Corros. Sci., 2022, 199: 110203
doi: 10.1016/j.corsci.2022.110203
|
4 |
Wang J, Wang L Z, Li J Q, et al. Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys[J]. J. Alloys Compd., 2022, 906: 164281
doi: 10.1016/j.jallcom.2022.164281
|
5 |
Hobbs R A, Zhang L, Rae C M F, et al. The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys[J]. Mater. Sci. Eng., 2008, A489: 65
|
6 |
Zhai Y D, Chen Y H, Zhao Y S, et al. Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation[J]. Acta Mater., 2021, 215: 116991
doi: 10.1016/j.actamat.2021.116991
|
7 |
Sun W Y, Chen M H, Bao Z B, et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000oC[J]. Surf. Coat. Technol., 2019, 358: 958
doi: 10.1016/j.surfcoat.2018.12.034
|
8 |
Fu L B, Zhang W L, Li S M, et al. Oxidation behavior of NiCrAlYSi coatings with Re-based diffusion barriers on two superalloys[J]. Corros. Sci., 2022, 198: 110096
doi: 10.1016/j.corsci.2022.110096
|
9 |
Ye X J, Yang B B, Nie Y, et al. Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy[J]. Corros. Sci., 2021, 185: 109436
doi: 10.1016/j.corsci.2021.109436
|
10 |
Sun X Y, Zhang L F, Pan Y M, et al. Microstructural evolution during cyclic oxidation of a Ni-based singe crystal superalloy at 1100oC[J]. Corros. Sci., 2020, 162: 108216
doi: 10.1016/j.corsci.2019.108216
|
11 |
Yu S Y, Zhan X, Liu F, et al. 900°C oxidation resistance of Ni-base superalloys alloyed with different refractory elements[J]. J. Alloys Compd., 2022, 904: 164071
doi: 10.1016/j.jallcom.2022.164071
|
12 |
Zhang Y Y, Wu H B, Yu X P, et al. Role of Cr in the high-temperature oxidation behavior of Cr x MnFeNi high-entropy alloys at 800oC in air[J]. Corros. Sci., 2022, 200: 110211
doi: 10.1016/j.corsci.2022.110211
|
13 |
Brumm M W, Grabke H J. The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J]. Corros. Sci., 1992, 33: 1677
doi: 10.1016/0010-938X(92)90002-K
|
14 |
Ul-Hamid A. A TEM study of the oxide scale development in Ni-Cr-Al alloys[J]. Corros. Sci., 2004, 46: 27
doi: 10.1016/S0010-938X(03)00100-8
|
15 |
Yu Y, Cai X P, Jiao X Y, et al. Oxidation resistance at 900oC of porous Ni-Al-Cr intermetallics synthesized via rapid thermal explosion reaction[J]. J. Alloys Compd., 2022, 906: 164374
doi: 10.1016/j.jallcom.2022.164374
|
16 |
Nijdam T J, Jeurgens L P H, Sloof W G. Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: Experiment versus model predictions[J]. Acta Mater., 2005, 53: 1643
doi: 10.1016/j.actamat.2004.12.014
|
17 |
Chyrkin A, Pillai R, Galiullin T, et al. External α-Al2O3 scale on Ni-base alloy 602 CA-Part I: Formation and long-term stability[J]. Corros. Sci., 2017, 124: 138
doi: 10.1016/j.corsci.2017.05.017
|
18 |
Ismail F B, Vorontsov V A, Lindley T C, et al. Alloying effects on oxidation mechanisms in polycrystalline Co-Ni base superalloys[J]. Corros. Sci., 2017, 116: 44
doi: 10.1016/j.corsci.2016.12.009
|
19 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
|
20 |
Ko Y S, Kim B K, Jung W S, et al. Effect of the microstructure of Haynes 282 nickel-based superalloys on oxidation behavior under oxy-fuel combustion conditions[J]. Corros. Sci., 2022, 198: 110110
doi: 10.1016/j.corsci.2022.110110
|
21 |
Sasaki T T, Ohkubo T, Hono K. Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering[J]. Acta Mater., 2009, 57: 3529
doi: 10.1016/j.actamat.2009.04.012
|
22 |
Mondet M, Barraud E, Lemonnier S, et al. Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering[J]. Acta Mater., 2016, 119: 55
doi: 10.1016/j.actamat.2016.08.006
|
23 |
Hu Z Y, Zhang Z H, Cheng X W, et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications[J]. Mater. Des., 2020, 191: 108662
doi: 10.1016/j.matdes.2020.108662
|
24 |
Wen H M, Topping T D, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering[J]. Acta Mater., 2013, 61: 2769
doi: 10.1016/j.actamat.2012.09.036
|
25 |
Muñoz-Saldaña J, Valencia-Ramirez A, Castillo-Perea L A, et al. Oxidation behavior of dense yttrium doped B2-NiAl bulk material fabricated by ball milling self-propagating high-temperature synthesis and densified by spark plasma sintering[J]. Surf. Coat. Technol., 2021, 421: 127448
doi: 10.1016/j.surfcoat.2021.127448
|
26 |
Meng J, Jia C C, He Q. Fabrication of oxide-reinforced Ni3Al composites by mechanical alloying and spark plasma sintering[J]. Mater. Sci. Eng., 2006, A434: 246
|
27 |
Wen S H, Zhou C G, Sha J B. Improvement of oxidation resistance of a Mo-62Si-5B (at.%) alloy at 1250oC and 1350oC via an in situ pre-formed SiO2 fabricated by spark plasma sintering[J]. Corros. Sci., 2017, 127: 175
doi: 10.1016/j.corsci.2017.08.019
|
28 |
Ikeda A, Goto K, Osada T, et al. High-throughput mapping method for mechanical properties, oxidation resistance, and phase stability in Ni-based superalloys using composition-graded unidirectional solidified alloys[J]. Scr. Mater., 2021, 193: 91
doi: 10.1016/j.scriptamat.2020.10.043
|
29 |
Wang K M, Du D, Liu G, et al. High-temperature oxidation behaviour of high chromium superalloys additively manufactured by conventional or extreme high-speed laser metal deposition[J]. Corros. Sci., 2020, 176: 108922
doi: 10.1016/j.corsci.2020.108922
|
30 |
Xie Y, Huang Y C, Li Y H, et al. A novel method to promote selective oxidation of Ni-Cr alloys: Surface spreading α-Al2O3 nanoparticles[J]. Corros. Sci., 2021, 190: 109717
doi: 10.1016/j.corsci.2021.109717
|
31 |
Pillai R, Chyrkin A, Galiullin T, et al. External α-Al2O3 scale on Ni-base alloy 602 CA-Part II: Microstructural evolution[J]. Corros. Sci., 2017, 127: 27
doi: 10.1016/j.corsci.2017.07.021
|
32 |
Liu H Y, Feng Y J, Li P, et al. Enhanced plasticity of the oxide scales by in-situ formed Cr2O3/Cr heterostructures for Cr-based coatings on Zr alloy in 1200oC steam[J]. Corros. Sci., 2021, 184: 109361
doi: 10.1016/j.corsci.2021.109361
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|