Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 485-494    DOI: 10.11900/0412.1961.2022.00240
  研究论文 本期目录 | 过刊浏览 |
放电等离子烧结Ni20Cr-xAl合金的高温氧化行为
刘丞济, 孙文瑶(), 陈明辉, 王福会
东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
High-Temperature Oxidation Behavior of Spark Plasma Sintered Ni20Cr-xAl Alloys
LIU Chengji, SUN Wenyao(), CHEN Minghui, WANG Fuhui
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
引用本文:

刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
Chengji LIU, Wenyao SUN, Minghui CHEN, Fuhui WANG. High-Temperature Oxidation Behavior of Spark Plasma Sintered Ni20Cr-xAl Alloys[J]. Acta Metall Sin, 2024, 60(4): 485-494.

全文: PDF(5285 KB)   HTML
摘要: 

高温氧化是限制镍基高温合金服役寿命的主要因素之一。本工作旨在通过调控Al含量来提升Ni20Cr合金的抗氧化性能。采用机械合金化(MA)和放电等离子烧结(SPS)的方法制备了Al含量(质量分数)分别为1.5%、3.0%、5.0%的Ni20Cr-xAl合金,对比研究了SPS制备合金与相同成分铸态合金在900℃空气中的高温氧化行为。结果表明,SPS制备合金成分、组织均匀且晶粒细小,大量晶界显著加速了元素的扩散,在Al含量为1.5%时,Al内氧化严重,Cr快速外氧化生成含有大量孔隙和裂纹的Cr2O3膜,而在Al含量为3.0%和5.0%时,形成了保护性的连续致密的α-Al2O3薄膜,合金内部弥散的Al2O3颗粒为外Al2O3膜提供了形核位点并起到了钉扎作用,因此2者表现出优异的抗氧化性能,氧化速率分别为1.06 × 10-7和4.92 × 10-8 mg2/(cm4·s)。铸态合金都发生了内氧化,而且无法形成连续的外Al2O3膜,氧化膜的主要成分为疏松多孔的Cr2O3,因而氧化速率快且发生了氧化膜开裂和剥落。

关键词 高温合金细晶结构高温氧化放电等离子烧结    
Abstract

As a high-performance structural material, nickel-based superalloy has excellent comprehensive properties, such as high-temperature mechanical properties, thermal stability, and corrosion resistance. It is widely used in hot-end parts, including the combustion chamber, turbine blades, and turbine disks, among others. Due to severe working environments, oxidation has become a major life-limiting factor for the nickel-based superalloy. However, the high-temperature oxidation behavior of a superalloy is complex, related to many factors, such as chemical composition and preparation technology. Many advances have been achieved through improving alloy compositions to meet the anti-oxidation requirements, and others have been accomplished using major innovations in processing. As a new powder metallurgy technology, spark plasma sintering (SPS) has the advantages of a fast heating rate, low sintering temperature, and short sintering time. However, there are few studies on the oxidation behavior of alloys prepared by this technology. In this study, Ni20Cr-xAl alloys with Al content (mass fraction) of 1.5%, 3.0%, and 5.0% were prepared by mechanical alloying and SPS. Oxidation kinetics, XRD, SEM, and TEM were used to compare and investigate the isothermal oxidation behaviors of the SPSed and the as-cast alloys with the same composition in air at 900oC. Results indicate that the SPSed alloys have uniform microstructures and fine grains, and abundant grain boundaries significantly accelerate the diffusion of elements. When the Al content is 1.5%, severe internal oxidation of Al occurs, and a Cr2O3 scale containing large pores and cracks is formed due to rapid external oxidation of Cr. Al2O3 particles dispersed in the alloy serve as nucleation sites for the exterior Al2O3 scale and have a pinning effect. However, when the Al content reaches 3.0% and 5.0%, a protective, continuous, and dense α-Al2O3 thin scale emerges. Therefore, both alloys display excellent oxidation resistance, the oxidation weight gain is 0.25 and 0.20 mg/cm2, respectively, and the corresponding oxidation rate is 1.06 × 10-7 and 4.92 × 10-8 mg2/(cm4·s). Internal oxidation occurs in all the as-cast alloys, and no continuous external Al2O3 scale can be formed. The main component of the oxide scales is porous Cr2O3, which results in high oxidation rates and crack and spallation of the oxide scales.

Key wordssuperalloy    fine-grain structure    high-temperature oxidation    spark plasma sintering
收稿日期: 2022-05-12     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(51871051);中国博士后科学基金项目(2022M720678)
通讯作者: 孙文瑶,sunwenyao@mail.neu.edu.cn,主要从事金属的高温氧化与防护研究
Corresponding author: SUN Wenyao, associate professor, Tel: 17824032549, E-mail: sunwenyao@mail.neu.edu.cn
作者简介: 刘丞济,女,1997年生,博士生
图1  放电等离子烧结(SPS)制备Ni20Cr-xAl合金微观组织的SEM像
图2  SPS制备Ni20Cr-xAl合金的XRD谱
图3  SPS制备Ni20Cr-xAl合金的EBSD像和晶粒尺寸分布图
图4  SPS制备Ni20Cr-3.0Al合金的TEM像和元素面扫图
图5  铸态和SPS制备Ni20Cr-xAl合金在900℃恒温氧化100 h的动力学曲线
Alloy statexΔw
mg·cm-2
kp
mg2·cm-4·s-1
As-cast1.50.455.53 × 10-7
3.00.424.95 × 10-7
5.00.282.22 × 10-7
SPSed1.50.751.55 × 10-6
3.00.251.06 × 10-7
5.00.204.92 × 10-8
表1  铸态和SPS制备Ni20Cr-xAl合金在900℃恒温氧化100 h的氧化增重(Δw)和氧化速率常数(kp)
图6  铸态和SPS制备Ni20Cr-xAl合金在900℃恒温氧化100 h后的XRD谱
图7  铸态和SPS制备Ni20Cr-xAl合金在900℃恒温氧化20 h后表面形貌的SEM像
图8  铸态和SPS制备Ni20Cr-xAl合金在900℃恒温氧化100 h后表面形貌的SEM像
图9  铸态Ni20Cr-xAl合金在900℃恒温氧化100 h后局部截面的SEM像和元素面扫图
图10  SPS制备Ni20Cr-xAl合金在900℃恒温氧化100 h后局部截面形貌的SEM像和元素面扫图
图11  SPS制备Ni20Cr-5.0Al合金在900℃恒温氧化100 h后氧化膜的TEM像和晶粒1、晶粒2的选区电子衍射花样
1 Yancheshmeh D A, Esmailian M, Shirvani K. Microstructural and oxidation behavior of NiCrAl super alloy containing hafnium at high temperature[J]. Int. J. Hydrogen Energy, 2018, 43: 5365
doi: 10.1016/j.ijhydene.2017.08.039
2 Llewelyn S C H, Chater R J, Jones N G, et al. The effect of systematic variation of Ni:Co ratio on the oxidation behaviour of γ-γ′ Ni-Co-Al-Ti-Cr alloys[J]. Corros. Sci., 2021, 178: 109087
doi: 10.1016/j.corsci.2020.109087
3 Ju J, Shen Z, Kang M D, et al. On the preferential grain boundary oxidation of a Ni-Co-based superalloy[J]. Corros. Sci., 2022, 199: 110203
doi: 10.1016/j.corsci.2022.110203
4 Wang J, Wang L Z, Li J Q, et al. Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys[J]. J. Alloys Compd., 2022, 906: 164281
doi: 10.1016/j.jallcom.2022.164281
5 Hobbs R A, Zhang L, Rae C M F, et al. The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys[J]. Mater. Sci. Eng., 2008, A489: 65
6 Zhai Y D, Chen Y H, Zhao Y S, et al. Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation[J]. Acta Mater., 2021, 215: 116991
doi: 10.1016/j.actamat.2021.116991
7 Sun W Y, Chen M H, Bao Z B, et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000oC[J]. Surf. Coat. Technol., 2019, 358: 958
doi: 10.1016/j.surfcoat.2018.12.034
8 Fu L B, Zhang W L, Li S M, et al. Oxidation behavior of NiCrAlYSi coatings with Re-based diffusion barriers on two superalloys[J]. Corros. Sci., 2022, 198: 110096
doi: 10.1016/j.corsci.2022.110096
9 Ye X J, Yang B B, Nie Y, et al. Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy[J]. Corros. Sci., 2021, 185: 109436
doi: 10.1016/j.corsci.2021.109436
10 Sun X Y, Zhang L F, Pan Y M, et al. Microstructural evolution during cyclic oxidation of a Ni-based singe crystal superalloy at 1100oC[J]. Corros. Sci., 2020, 162: 108216
doi: 10.1016/j.corsci.2019.108216
11 Yu S Y, Zhan X, Liu F, et al. 900°C oxidation resistance of Ni-base superalloys alloyed with different refractory elements[J]. J. Alloys Compd., 2022, 904: 164071
doi: 10.1016/j.jallcom.2022.164071
12 Zhang Y Y, Wu H B, Yu X P, et al. Role of Cr in the high-temperature oxidation behavior of Cr x MnFeNi high-entropy alloys at 800oC in air[J]. Corros. Sci., 2022, 200: 110211
doi: 10.1016/j.corsci.2022.110211
13 Brumm M W, Grabke H J. The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J]. Corros. Sci., 1992, 33: 1677
doi: 10.1016/0010-938X(92)90002-K
14 Ul-Hamid A. A TEM study of the oxide scale development in Ni-Cr-Al alloys[J]. Corros. Sci., 2004, 46: 27
doi: 10.1016/S0010-938X(03)00100-8
15 Yu Y, Cai X P, Jiao X Y, et al. Oxidation resistance at 900oC of porous Ni-Al-Cr intermetallics synthesized via rapid thermal explosion reaction[J]. J. Alloys Compd., 2022, 906: 164374
doi: 10.1016/j.jallcom.2022.164374
16 Nijdam T J, Jeurgens L P H, Sloof W G. Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: Experiment versus model predictions[J]. Acta Mater., 2005, 53: 1643
doi: 10.1016/j.actamat.2004.12.014
17 Chyrkin A, Pillai R, Galiullin T, et al. External α-Al2O3 scale on Ni-base alloy 602 CA-Part I: Formation and long-term stability[J]. Corros. Sci., 2017, 124: 138
doi: 10.1016/j.corsci.2017.05.017
18 Ismail F B, Vorontsov V A, Lindley T C, et al. Alloying effects on oxidation mechanisms in polycrystalline Co-Ni base superalloys[J]. Corros. Sci., 2017, 116: 44
doi: 10.1016/j.corsci.2016.12.009
19 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
20 Ko Y S, Kim B K, Jung W S, et al. Effect of the microstructure of Haynes 282 nickel-based superalloys on oxidation behavior under oxy-fuel combustion conditions[J]. Corros. Sci., 2022, 198: 110110
doi: 10.1016/j.corsci.2022.110110
21 Sasaki T T, Ohkubo T, Hono K. Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering[J]. Acta Mater., 2009, 57: 3529
doi: 10.1016/j.actamat.2009.04.012
22 Mondet M, Barraud E, Lemonnier S, et al. Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering[J]. Acta Mater., 2016, 119: 55
doi: 10.1016/j.actamat.2016.08.006
23 Hu Z Y, Zhang Z H, Cheng X W, et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications[J]. Mater. Des., 2020, 191: 108662
doi: 10.1016/j.matdes.2020.108662
24 Wen H M, Topping T D, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering[J]. Acta Mater., 2013, 61: 2769
doi: 10.1016/j.actamat.2012.09.036
25 Muñoz-Saldaña J, Valencia-Ramirez A, Castillo-Perea L A, et al. Oxidation behavior of dense yttrium doped B2-NiAl bulk material fabricated by ball milling self-propagating high-temperature synthesis and densified by spark plasma sintering[J]. Surf. Coat. Technol., 2021, 421: 127448
doi: 10.1016/j.surfcoat.2021.127448
26 Meng J, Jia C C, He Q. Fabrication of oxide-reinforced Ni3Al composites by mechanical alloying and spark plasma sintering[J]. Mater. Sci. Eng., 2006, A434: 246
27 Wen S H, Zhou C G, Sha J B. Improvement of oxidation resistance of a Mo-62Si-5B (at.%) alloy at 1250oC and 1350oC via an in situ pre-formed SiO2 fabricated by spark plasma sintering[J]. Corros. Sci., 2017, 127: 175
doi: 10.1016/j.corsci.2017.08.019
28 Ikeda A, Goto K, Osada T, et al. High-throughput mapping method for mechanical properties, oxidation resistance, and phase stability in Ni-based superalloys using composition-graded unidirectional solidified alloys[J]. Scr. Mater., 2021, 193: 91
doi: 10.1016/j.scriptamat.2020.10.043
29 Wang K M, Du D, Liu G, et al. High-temperature oxidation behaviour of high chromium superalloys additively manufactured by conventional or extreme high-speed laser metal deposition[J]. Corros. Sci., 2020, 176: 108922
doi: 10.1016/j.corsci.2020.108922
30 Xie Y, Huang Y C, Li Y H, et al. A novel method to promote selective oxidation of Ni-Cr alloys: Surface spreading α-Al2O3 nanoparticles[J]. Corros. Sci., 2021, 190: 109717
doi: 10.1016/j.corsci.2021.109717
31 Pillai R, Chyrkin A, Galiullin T, et al. External α-Al2O3 scale on Ni-base alloy 602 CA-Part II: Microstructural evolution[J]. Corros. Sci., 2017, 127: 27
doi: 10.1016/j.corsci.2017.07.021
32 Liu H Y, Feng Y J, Li P, et al. Enhanced plasticity of the oxide scales by in-situ formed Cr2O3/Cr heterostructures for Cr-based coatings on Zr alloy in 1200oC steam[J]. Corros. Sci., 2021, 184: 109361
doi: 10.1016/j.corsci.2021.109361
[1] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[2] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[3] 谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
[4] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[5] 龙江东, 段慧超, 赵鹏, 张瑞, 郑涛, 曲敬龙, 崔传勇, 杜奎. GH4151镍基高温合金 μ 相中的基面层错[J]. 金属学报, 2024, 60(2): 167-178.
[6] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[7] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[9] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[15] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.