|
|
固态相变和软化效应对超高强钢焊接残余应力的影响 |
王重阳1, 韩世伟2, 谢峰2, 胡龙1, 邓德安1( ) |
1重庆大学 材料科学与工程学院 重庆 400045 2重庆铁马工业集团有限公司 重庆 400050 |
|
Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel |
WANG Chongyang1, HAN Shiwei2, XIE Feng2, HU Long1, DENG Dean1( ) |
1College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China 2Chongqing Tiema Industries Group Co. Ltd., Chongqing 400050, China |
引用本文:
王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
Chongyang WANG,
Shiwei HAN,
Feng XIE,
Long HU,
Dean DENG.
Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. Acta Metall Sin, 2023, 59(12): 1613-1623.
1 |
Dai W Z, Liu J F, Gao L. Welding Engineering Application Technology and Cases of Building Steel Structure[M]. Beijing: Chemical Industry Press, 2016: 1
|
1 |
戴为志, 刘景凤, 高 良. 建筑钢结构焊接工程应用技术及案例[M]. 北京: 化学工业出版社, 2016: 1
|
2 |
Shi G, Shi Y J, Ban H Y. High-Strength Steel and Structure[M]. Beijing: China Architecture & Building Press, 2014: 1
|
2 |
施 刚, 石永久, 班慧勇. 高强度钢材钢结构[M]. 北京: 中国建筑工业出版社, 2014: 1
|
3 |
Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel[J]. Acta Metall. Sin., 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
|
3 |
彭 云, 宋 亮, 赵 琳 等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56: 601
|
4 |
Berg J, Stranghoener N, Kern A, et al. Variable amplitude fatigue tests at high frequency hammer peened welded ultra high strength steel S1100[J]. Procedia Struct. Integr., 2016, 2: 3554
|
5 |
Tomków J, Landowski M, Fydrych D, et al. Underwater wet welding of S1300 ultra-high strength steel[J]. Mar. Struct., 2022, 81: 103120
doi: 10.1016/j.marstruc.2021.103120
|
6 |
Chen C, Zhou H P, Wang C J, et al. Laser welding of ultra-high strength steel with different oscillating modes[J]. J. Manuf. Processes., 2021, 68: 761
doi: 10.1016/j.jmapro.2021.06.004
|
7 |
Sun Y W, Quan J, Salvador H, et al. Ausforming and tempering of a novel ultra-high strength steel[J]. Mater. Sci. Eng., 2022, A838: 142750
|
8 |
Xu D X. Research on weldability of the under-matching weld joint of super-high strength steel welded by high-chromium-nickel austenitic welding consumables[D]. Harbin: Harbin Institute of Technology, 2015
|
8 |
徐冬霞. 超高强钢高铬镍奥氏体焊材低强匹配焊接性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015
|
9 |
Lu S J, Wang H, Dai P Y, et al. Effect of creep on prediction accuracy and calculating efficiency of residual stress in post weld heat treatment[J]. Acta Metall. Sin., 2019, 55: 1581
|
9 |
逯世杰, 王 虎, 戴培元 等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55: 1581
doi: 10.11900/0412.1961.2019.00208
|
10 |
Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint[J]. J. Mater. Eng. Perform., 2017, 26: 1494
doi: 10.1007/s11665-017-2626-6
|
11 |
Qu Z X, Xia L Q. Study on welding deformation numerical simulation for ultra-high strength steel BS960E[J]. Procedia Manuf., 2019, 37: 97
|
12 |
Sun Y J, Shi Q Y, Zang Y, et al. Numerical simulation of multi-physical coupling of welding process for high strength low alloy steel[J]. J. Mech. Eng., 2019, 55(20): 168
doi: 10.3901/JME.2019.20.168
|
12 |
孙玉杰, 史清宇, 臧 勇 等. 高强低合金钢焊接过程多物理场耦合数值模拟[J]. 机械工程学报, 2019, 55(20): 168
doi: 10.3901/JME.2019.20.168
|
13 |
Deng D A, Murakawa H. FEM prediction of buckling distortion induced by welding in thin plate panel structures[J]. Comput. Mater. Sci., 2008, 43: 591
doi: 10.1016/j.commatsci.2008.01.003
|
14 |
Deng D A, Zhang Y B, Li S, et al. Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394
|
14 |
邓德安, 张彦斌, 李 索 等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394
doi: 10.11900/0412.1961.2015.00371
|
15 |
Fang J X, Dong S Y, Xu B S, et al. Study of stresses of laser metal deposition using FEM considering phase transformation effects[J]. Chin. J. Lasers, 2015, 42: 0503009
|
15 |
方金祥, 董世运, 徐滨士 等. 考虑固态相变的激光熔覆成形应力场有限元分析[J]. 中国激光, 2015, 42: 0503009
|
16 |
Nishimura R, Ma N S, Liu Y, et al. Measurement and analysis of welding deformation and residual stress in CMT welded lap joints of 1180 MPa steel sheets[J]. J. Manuf. Processes, 2021, 72: 515
doi: 10.1016/j.jmapro.2021.10.050
|
17 |
Li H, Huang Z Q, Zhang C, et al. Study on softening of welded joints of low alloy high strength wear-resistant steel[J]. Hot Work. Technol., 2020, 49(17): 19
|
17 |
李 恒, 黄智泉, 张 翅 等. 低合金高强耐磨钢焊接接头软化现象研究[J]. 热加工工艺, 2020, 49(17): 19
|
18 |
Deng D A, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Comput. Mater. Sci., 2006, 37: 269
doi: 10.1016/j.commatsci.2005.07.007
|
19 |
Deng D A. Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint[J]. Mater. Des., 2013, 49: 1022
doi: 10.1016/j.matdes.2013.02.065
|
20 |
Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint[J]. Acta Metall. Sin., 2014, 50: 626
doi: 10.3724/SP.J.1037.2013.00565
|
20 |
邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响[J]. 金属学报, 2014, 50: 626
doi: 10.3724/SP.J.1037.2013.00565
|
21 |
Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metall. Mater. Trans., 1984, 15B: 299
|
22 |
Kumar-Krishnasamy R, Siegele D. 3D modelling of a multi pass dissimilar tube welding and post weld heat treatment of nickel based alloy and chromium steel[J]. Int. J. Press. Vessels Pip., 2010, 87: 643
doi: 10.1016/j.ijpvp.2010.08.010
|
23 |
Hu L, Wang Y F, Li S, et al. Study on computational prediction about microstructure and hardness of Q345 steel welded joint based on SH-CCT diagram[J]. Acta Metall. Sin., 2021, 57: 1073
doi: 10.11900/0412.1961.2020.00371
|
23 |
胡 龙, 王义峰, 李 索 等. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57: 1073
|
24 |
Kumar S, Awasthi R, Viswanadham C S, et al. Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr-1Mo(V, Nb) ferritic/martensitic steel[J]. Mater. Des., 2014, 59: 211
doi: 10.1016/j.matdes.2014.02.046
|
25 |
Yaghi A H, Hyde T H, Becker A A, et al. Residual stress simulation in welded sections of P91 pipes[J]. J. Mater. Process. Technol., 2005, 167: 480
doi: 10.1016/j.jmatprotec.2005.05.036
|
26 |
GroupESI. Reference Manual for SYSWELD® 2009[M]. Paris: ESI France, 2008: 10
|
27 |
Inoue T. Unified transformation-thermoplasticity and the application[J]. J. Soc. Mater. Sci. Jpn., 2007, 56: 352
doi: 10.2472/jsms.56.352
|
27 |
井上達雄. 統合型変態·熱塑性構成式理論とその応用[J]. 日本材料試協会誌, 2007, 56: 352
|
28 |
Leblond J B, Devaux J, Devaux J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases[J]. Int. J. Plast., 1989, 5: 551
doi: 10.1016/0749-6419(89)90001-6
|
29 |
Liang W, Murakawa H, Deng D A. Investigation of welding residual stress distribution in a thick-plate joint with an emphasis on the features near weld end-start[J]. Mater. Des., 2015, 67: 303
doi: 10.1016/j.matdes.2014.11.037
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|