Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1613-1623    DOI: 10.11900/0412.1961.2022.00243
  本期目录 | 过刊浏览 |
固态相变和软化效应对超高强钢焊接残余应力的影响
王重阳1, 韩世伟2, 谢峰2, 胡龙1, 邓德安1()
1重庆大学 材料科学与工程学院 重庆 400045
2重庆铁马工业集团有限公司 重庆 400050
Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel
WANG Chongyang1, HAN Shiwei2, XIE Feng2, HU Long1, DENG Dean1()
1College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2Chongqing Tiema Industries Group Co. Ltd., Chongqing 400050, China
引用本文:

王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
Chongyang WANG, Shiwei HAN, Feng XIE, Long HU, Dean DENG. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. Acta Metall Sin, 2023, 59(12): 1613-1623.

全文: PDF(2210 KB)   HTML
摘要: 

以板厚为5 mm的1600 MPa级超高强钢为研究对象,采用熔化极惰性气体保护焊(MIG)焊接方法和ER307Si焊丝制备了单道对接接头,分别利用盲孔法和显微硬度仪测量残余应力和接头硬度分布。基于接头热影响区和软化区的硬度测量结果,以SYSWELD软件为平台,开发了考虑超高强钢固态相变和软化效应以及焊缝金属加工硬化和退火软化的“热-冶金-力学”多场耦合的有限元计算方法。采用该方法模拟了超高强钢单道对接接头的温度场及残余应力,并与实验结果进行了比较。基于数值模拟结果探讨了固态相变和软化效应对焊接残余应力的影响机制。数值模拟结果表明,固态相变对纵向残余应力的大小和分布有显著影响;对横向残余应力的大小和分布有一定程度的影响。软化效应对纵向残余应力的峰值有较显著的影响,对横向残余应力几乎没有影响。将数值模拟结果与实验结果比较可知,在同时考虑固态相变和软化效应的情况下,平板对接接头的焊接残余应力计算结果与实验测量结果最为吻合。

关键词 超高强钢固态相变软化效应焊接残余应力数值模拟    
Abstract

In recent years, ultra-high strength steel (UHSS) has been widely utilized in engineering structures, mining machinery, and military equipment. However, UHSS is prone to brittle fracture and fatigue failure due to high strength and relatively low plasticity. Moreover, residual stress induced by welding process affects both brittle fracture and fatigue failure. In this work, a single-pass butt-welded joint was fabricated by metal inert-gas welding. The base metal was 1600 MPa grade UHSS with a 5 mm thickness, and the filler metal was ER307Si. The distributions of welding residual stress and hardness of the butt-welded joint were measured using the hole drilling method and a microhardness tester, respectively. Based on measured values of hardness in the heat-affected zone (HAZ) and softening zone (SZ), SYSWELD software was used to develop an advanced computational approach with consideration of “thermal-metallurgical-mechanical” coupling behaviors. In addition to the strain hardening and annealing effects of weld metal, the established computational model accounted for both the solid-state phase transformation (SSPT) of HAZ and softening effect of SZ. The temperature field and residual stress distribution of the UHSS single-pass butt-welded joint were simulated. Furthermore, the simulated results were compared with the corresponding measured data. The simulation results revealed the effect of SSPT and softening on welding residual stress. The numerical results indicated that SSPT has a strong influence on both the magnitude and distribution of the longitudinal residual stress; however, it has a limited effect on transverse residual stress. Meanwhile, the softening effect drastically affects the peak values of the longitudinal residual stress, while it hardly influences transverse residual stress. When both SSPT and softening effects are simultaneously considered in the numerical model, the computed results of welding residual stress are in good agreement with the experimental measurements.

Key wordsultra-high strength steel    solid-state phase transformation    softening effect    welding residual stress    numerical simulation
收稿日期: 2022-05-13     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目(51875063)
通讯作者: 邓德安,deandeng@cqu.edu.cn,主要从事计算焊接力学、焊接物理冶金及结构完整性等方面的研究
作者简介: 王重阳,男,1996年生,硕士生
图1  焊接试件几何尺寸示意图
图2  应变片布置位置示意图
图3  显微硬度测量点位置示意图
图4  有限元模型示意图
图5  超高强钢的热物理性能参数
图6  超高强淬火钢加热和冷却过程中的温度-应变曲线
图7  软化模型示意图
图8  超高强钢的力学性能参数
CaseSSPTSE
ANoNo
BYesNo
CYesYes
表1  计算案例
图9  焊接接头的显微硬度分布
图10  焊接温度循环计算结果和实验结果对比
图11  沿L1的峰值温度分布
图12  上表面、中央断面和中央断面上表面示意图
图13  超高强钢对接接头3种计算案例的上表面纵向残余应力云图
图14  超高强钢对接接头3种计算案例的中央断面纵向残余应力云图
图15  超高强钢对接接头3种计算案例的中央断面上表面纵向应力分布计算结果与实验测量结果对比
图16  超高强钢对接接头3种计算案例的上表面横向残余应力云图
图17  超高强钢对接接头3种计算案例的中央断面横向残余应力云图
图18  超高强钢对接接头3种计算案例的中央断面上表面横向应力分布计算结果与实验测量结果对比
1 Dai W Z, Liu J F, Gao L. Welding Engineering Application Technology and Cases of Building Steel Structure[M]. Beijing: Chemical Industry Press, 2016: 1
1 戴为志, 刘景凤, 高 良. 建筑钢结构焊接工程应用技术及案例[M]. 北京: 化学工业出版社, 2016: 1
2 Shi G, Shi Y J, Ban H Y. High-Strength Steel and Structure[M]. Beijing: China Architecture & Building Press, 2014: 1
2 施 刚, 石永久, 班慧勇. 高强度钢材钢结构[M]. 北京: 中国建筑工业出版社, 2014: 1
3 Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel[J]. Acta Metall. Sin., 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
3 彭 云, 宋 亮, 赵 琳 等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56: 601
4 Berg J, Stranghoener N, Kern A, et al. Variable amplitude fatigue tests at high frequency hammer peened welded ultra high strength steel S1100[J]. Procedia Struct. Integr., 2016, 2: 3554
5 Tomków J, Landowski M, Fydrych D, et al. Underwater wet welding of S1300 ultra-high strength steel[J]. Mar. Struct., 2022, 81: 103120
doi: 10.1016/j.marstruc.2021.103120
6 Chen C, Zhou H P, Wang C J, et al. Laser welding of ultra-high strength steel with different oscillating modes[J]. J. Manuf. Processes., 2021, 68: 761
doi: 10.1016/j.jmapro.2021.06.004
7 Sun Y W, Quan J, Salvador H, et al. Ausforming and tempering of a novel ultra-high strength steel[J]. Mater. Sci. Eng., 2022, A838: 142750
8 Xu D X. Research on weldability of the under-matching weld joint of super-high strength steel welded by high-chromium-nickel austenitic welding consumables[D]. Harbin: Harbin Institute of Technology, 2015
8 徐冬霞. 超高强钢高铬镍奥氏体焊材低强匹配焊接性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015
9 Lu S J, Wang H, Dai P Y, et al. Effect of creep on prediction accuracy and calculating efficiency of residual stress in post weld heat treatment[J]. Acta Metall. Sin., 2019, 55: 1581
9 逯世杰, 王 虎, 戴培元 等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55: 1581
doi: 10.11900/0412.1961.2019.00208
10 Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint[J]. J. Mater. Eng. Perform., 2017, 26: 1494
doi: 10.1007/s11665-017-2626-6
11 Qu Z X, Xia L Q. Study on welding deformation numerical simulation for ultra-high strength steel BS960E[J]. Procedia Manuf., 2019, 37: 97
12 Sun Y J, Shi Q Y, Zang Y, et al. Numerical simulation of multi-physical coupling of welding process for high strength low alloy steel[J]. J. Mech. Eng., 2019, 55(20): 168
doi: 10.3901/JME.2019.20.168
12 孙玉杰, 史清宇, 臧 勇 等. 高强低合金钢焊接过程多物理场耦合数值模拟[J]. 机械工程学报, 2019, 55(20): 168
doi: 10.3901/JME.2019.20.168
13 Deng D A, Murakawa H. FEM prediction of buckling distortion induced by welding in thin plate panel structures[J]. Comput. Mater. Sci., 2008, 43: 591
doi: 10.1016/j.commatsci.2008.01.003
14 Deng D A, Zhang Y B, Li S, et al. Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394
14 邓德安, 张彦斌, 李 索 等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394
doi: 10.11900/0412.1961.2015.00371
15 Fang J X, Dong S Y, Xu B S, et al. Study of stresses of laser metal deposition using FEM considering phase transformation effects[J]. Chin. J. Lasers, 2015, 42: 0503009
15 方金祥, 董世运, 徐滨士 等. 考虑固态相变的激光熔覆成形应力场有限元分析[J]. 中国激光, 2015, 42: 0503009
16 Nishimura R, Ma N S, Liu Y, et al. Measurement and analysis of welding deformation and residual stress in CMT welded lap joints of 1180 MPa steel sheets[J]. J. Manuf. Processes, 2021, 72: 515
doi: 10.1016/j.jmapro.2021.10.050
17 Li H, Huang Z Q, Zhang C, et al. Study on softening of welded joints of low alloy high strength wear-resistant steel[J]. Hot Work. Technol., 2020, 49(17): 19
17 李 恒, 黄智泉, 张 翅 等. 低合金高强耐磨钢焊接接头软化现象研究[J]. 热加工工艺, 2020, 49(17): 19
18 Deng D A, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Comput. Mater. Sci., 2006, 37: 269
doi: 10.1016/j.commatsci.2005.07.007
19 Deng D A. Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint[J]. Mater. Des., 2013, 49: 1022
doi: 10.1016/j.matdes.2013.02.065
20 Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint[J]. Acta Metall. Sin., 2014, 50: 626
doi: 10.3724/SP.J.1037.2013.00565
20 邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响[J]. 金属学报, 2014, 50: 626
doi: 10.3724/SP.J.1037.2013.00565
21 Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metall. Mater. Trans., 1984, 15B: 299
22 Kumar-Krishnasamy R, Siegele D. 3D modelling of a multi pass dissimilar tube welding and post weld heat treatment of nickel based alloy and chromium steel[J]. Int. J. Press. Vessels Pip., 2010, 87: 643
doi: 10.1016/j.ijpvp.2010.08.010
23 Hu L, Wang Y F, Li S, et al. Study on computational prediction about microstructure and hardness of Q345 steel welded joint based on SH-CCT diagram[J]. Acta Metall. Sin., 2021, 57: 1073
doi: 10.11900/0412.1961.2020.00371
23 胡 龙, 王义峰, 李 索 等. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57: 1073
24 Kumar S, Awasthi R, Viswanadham C S, et al. Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr-1Mo(V, Nb) ferritic/martensitic steel[J]. Mater. Des., 2014, 59: 211
doi: 10.1016/j.matdes.2014.02.046
25 Yaghi A H, Hyde T H, Becker A A, et al. Residual stress simulation in welded sections of P91 pipes[J]. J. Mater. Process. Technol., 2005, 167: 480
doi: 10.1016/j.jmatprotec.2005.05.036
26 GroupESI. Reference Manual for SYSWELD® 2009[M]. Paris: ESI France, 2008: 10
27 Inoue T. Unified transformation-thermoplasticity and the application[J]. J. Soc. Mater. Sci. Jpn., 2007, 56: 352
doi: 10.2472/jsms.56.352
27 井上達雄. 統合型変態·熱塑性構成式理論とその応用[J]. 日本材料試協会誌, 2007, 56: 352
28 Leblond J B, Devaux J, Devaux J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases[J]. Int. J. Plast., 1989, 5: 551
doi: 10.1016/0749-6419(89)90001-6
29 Liang W, Murakawa H, Deng D A. Investigation of welding residual stress distribution in a thick-plate joint with an emphasis on the features near weld end-start[J]. Mater. Des., 2015, 67: 303
doi: 10.1016/j.matdes.2014.11.037
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[4] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[10] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[12] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[13] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[14] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[15] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.