Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 333-347    DOI: 10.11900/0412.1961.2022.00313
  研究论文 本期目录 | 过刊浏览 |
航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析
杨杰1,2, 黄森森2, 尹慧3, 翟瑞志3, 马英杰1,2(), 向伟3, 罗恒军3, 雷家峰1,2, 杨锐1,2
1中国科学技术大学 材料科学与工程学院 沈阳 110016
2中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3中国第二重型机械集团德阳万航模锻有限责任公司 德阳 618000
Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation
YANG Jie1,2, HUANG Sensen2, YIN Hui3, ZHAI Ruizhi3, MA Yingjie1,2(), XIANG Wei3, LUO Hengjun3, LEI Jiafeng1,2, YANG Rui1,2
1School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3China National Erzhong Group Deyang Wanhang Die Forging Co. Ltd., Deyang 618000, China
引用本文:

杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
Jie YANG, Sensen HUANG, Hui YIN, Ruizhi ZHAI, Yingjie MA, Wei XIANG, Hengjun LUO, Jiafeng LEI, Rui YANG. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. Acta Metall Sin, 2024, 60(3): 333-347.

全文: PDF(6511 KB)   HTML
摘要: 

针对β锻制备的航空用TC21钛合金变截面模锻件的组织和力学性能不均匀性,采用Deform软件模拟、OM、SEM、XRD、EBSD、拉伸和示波冲击,对不同等效应变处的显微组织和力学性能进行表征,对比分析了影响拉伸和冲击及其各向异性的主要因素。结果表明,模锻件整体形状复杂,等效应变集中于0.75~1.20范围,应变高处流线组织明显,亚结构增多,窄截面导致冷速较快,使得初生α相含量减少以及次生α相细化,共同导致了强度升高。分析了高应变处在热变形和热处理过程中各相组成的织构演化,最终为残余β相的<110>//LD的强织构及转变α相的{0002} 2种较弱织构,从α相滑移系和β相密排面分析了强织构导致的强度各向异性。示波曲线表明冲击功主要消耗于萌生能,结合原始β晶粒排布讨论了不同取向冲击和拉伸断口的断裂模式差异,最后提出拉伸断裂模型,解释了高应变1.20处具有良好强塑性匹配的原因。

关键词 TC21钛合金模锻件等效应变织构力学性能    
Abstract

TC21 titanium alloy has been successfully used in the structural die forgings of aviation owing to its excellent damage tolerance. However, because of the difference in the equivalent strains of die forgings, the microstructure and properties of variable cross-sections are considerably different, affecting the service life of the structural parts. Therefore, the microstructure and mechanical properties of β-forged TC21 titanium alloy die forgings with variable cross-sections were characterized using Deform software simulation, OM, SEM, XRD, EBSD, and tensile and impact tests, and the primary factors affecting the tensile and impact properties as well as their anisotropy were comprehensively analyzed. The results showed that the overall shape of the die forgings was complex and the effective strain was concentrated in the range of 0.75-1.20. The evidence of the flow was obvious at high strain, the substructure increased, and the narrow cross-section led to a faster cooling rate. This resulted in the decrease of αp content and refinement of αs, which together led to the increase in strength. The evolution of various texture components under high strain during thermal deformation and heat treatment was analyzed, and finally the strong texture of residual β phase <110>//LD and {0002} weak texture of transformed α phase were formed. The strength anisotropy caused by the strong texture was analyzed from α phase slip system and β phase densely packed plane. The impact load-displacement curves showed that the impact energy was mainly consumed via the initiation energy. Combining with the prior β grain arrangement, the fracture modes of impact and tensile fracture in different orientations were discussed. Finally, a tensile fracture model was proposed, which explained the reason that there was a good strength and plastic matching at a high strain of 1.20. This work provides material research support for optimizing the uniformity design of TC21 alloy variable cross-section die forgings.

Key wordsTC21 titanium alloy    die forging    effective strain    texture    mechanical property
收稿日期: 2022-06-23     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51871225);国家自然科学基金项目(U2106215);德阳市科技计划项目(2021JBJZ011)
通讯作者: 马英杰,yjma@imr.ac.cn,主要从事结构钛合金研究
Corresponding author: MA Yingjie, professor, Tel: 13840026329, E-mail: yjma@imr.ac.cn
作者简介: 杨 杰,男,1996年生,博士生
图1  TC21合金模锻件的低倍形貌和等效应变分布图
图2  TC21模锻件不同位置处的OM和SEM像
图3  图1a中Ⅱ~Ⅵ处的α相{0002}和{101¯0}极图
图4  图1a中Ⅱ~Ⅵ处的β相{110}和{200}极图
图5  图1a中Ⅱ~Ⅵ处的β相的取向分布函数(ODF)图(φ2 = 45°)
图6  图1a中Ⅱ处低倍下α + β取向图、极图和αGB与两侧β晶粒的Burgers关系分析
Phaseβ forgingα + β solution treatmentAging treatment
β matrix<110>//LDWeakerPreserved
αpGrain boundary α phase texturePreservedPreserved
Intragranular α phase textureStrongerPreserved
αs--Several variants (Overlaps αp)
表1  热变形及热处理过程中的TC21合金各相组成织构演化过程
图7  图1a中Ⅱ处高倍SEM像和α + β取向图及相应极图
图8  TC21合金模锻件不同位置沿LD的室温拉伸曲线
PositionRp0.2MPaRmMPa

A

%

Z

%

I

J

1084 ± 31210 ± 55.0 ± 3.311.0 ± 4.327.0 ± 1.5
1063 ± 51198 ± 109.0 ± 1.514.0 ± 2.533.0 ± 2.0
1042 ± 61171 ± 78.0 ± 2.411.5 ± 3.232.0 ± 1.0
1040 ± 61156 ± 68.8 ± 1.514.5 ± 3.536.0 ± 2.5
1014 ± 21137 ± 311.3 ± 1.716.0 ± 2.440.0 ± 2.0
1010 ± 41125 ± 48.0 ± 2.015.5 ± 2.538.0 ± 1.5
表2  TC21合金模锻件不同位置沿横向(LD)的室温力学性能
图9  图1a中Ⅱ和Ⅵ处的α + β取向图、局部取向差、BSE像及两相比例分析
PositionDirectionRp0.2 / MPaRm / MPaA / %Z / %I / J
LD1063 ± 51198 ± 109.0 ± 1.514.0 ± 2.533.0 ± 2.0
ND1043 ± 31185 ± 58.0 ± 2.010.0 ± 3.530.9 ± 2.1
LD1014 ± 21137 ± 311.3 ± 1.716.0 ± 2.440.0 ± 2.0
ND1013 ± 31138 ± 46.5 ± 2.511.0 ± 3.036.0 ± 3.5
表3  图1a中Ⅱ和Ⅴ处沿不同方向的拉伸和冲击性能
图10  图1a中Ⅱ处沿不同方向的典型冲击曲线
图11  图1a中Ⅱ处沿不同方向的典型冲击断口形貌
图12  图1a中Ⅱ处沿不同方向的典型拉伸断口形貌
图13  图1a中Ⅱ和Ⅴ处分别沿LD和ND加载的反极图
图14  图1a中Ⅱ处原始β晶粒沿不同方向的拉伸过程示意图
1 Zhang F, Dou Z L, Zou Y B. Application status and development trend of aeronautical forging technology [J]. Aeronaut. Manuf. Technol., 2015, (7): 60
1 张 方, 窦忠林, 邹彦博. 航空锻造技术的应用现状及发展趋势 [J]. 航空制造技术, 2015, (7): 60
2 Gao L. Investigations on precision forming technology and manufacture of aviation large die forgings [D]. Chongqing: Chongqing University, 2019
2 高 林. 大型航空模锻件整体精密成形工艺技术研究与试制 [D]. 重庆: 重庆大学, 2019
3 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
3 杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
4 Saurabh A, Meghana C M, Singh P K, et al. Titanium-based materials: Synthesis, properties, and applications [J]. Mater. Today Proc., 2022, 56: 412
5 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
6 Tan C S, Sun Q Y, Zhang G J, et al. Remarkable increase in high-cycle fatigue resistance in a titanium alloy with a fully lamellar microstructure [J]. Int. J. Fatigue, 2020, 138: 105724
doi: 10.1016/j.ijfatigue.2020.105724
7 Wang S, Liang Y L, Sun H, et al. Thermomechanical treatment-induced microstructure refinement to optimize mechanical properties of TC21 titanium alloys [J]. Mater. Sci. Eng., 2021, A812: 141095
8 Shao H, Zhao Y Q, Ge P, et al. Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure [J]. Mater. Sci. Eng., 2013, A586: 215
9 Lei L, Zhao Q Y, Zhao Y Q, et al. Study on the intrinsic factors determining impact toughness of TC21 alloy [J]. Mater. Charact., 2021, 177: 111164
doi: 10.1016/j.matchar.2021.111164
10 Zhou X H, Liu W, Hao F, et al. Influence of quasi-β forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forg. Stamp. Technol., 2020, 45: 29
10 周晓虎, 刘 卫, 郝 芳 等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响 [J]. 锻压技术, 2020, 45: 29
doi: 10.13330/j.issn.1000-3940.2020.06.005
11 Shi Z F, Guo H Z, Liu R, et al. Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 72
doi: 10.1016/S1003-6326(15)63580-4
12 Shi Z F, Guo H Z, Han J Y, et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2882
doi: 10.1016/S1003-6326(13)62810-1
13 Zhu W G, Lei J, Su B, et al. The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V [J]. Mater. Sci. Eng., 2020, A782: 139248
14 Chen W, Zeng W D, Zhao Y H, et al. Fracture toughness anisotropy of Ti17 billet processed by the β forging [J]. Mater. Sci. Eng., 2021, A807: 140825
15 Liu Z, Liu J R, Zhao Z B, et al. Microstructure and tensile property of TC4 alloy produced via electron beam rapid manufacturing [J]. Acta Metall. Sin., 2019, 55: 692
doi: 10.11900/0412.1961.2019.00007
15 刘 征, 刘建荣, 赵子博 等. 电子束快速成形制备TC4合金的组织和拉伸性能分析 [J]. 金属学报, 2019, 55: 692
16 Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
doi: 10.1016/j.jmst.2018.10.032
17 Wu Z H, Kou H C, Chen N N, et al. The effect of cubic-texture on fatigue cracking in a metastable β titanium alloy subjected to high-cycle fatigue [J]. Int. J. Fatigue, 2020, 141: 105872
doi: 10.1016/j.ijfatigue.2020.105872
18 Chen J H, Li J S, Tang B, et al. Microstructure and texture evolution of a near β titanium alloy Ti-7333 during continuous cooling hot deformation [J]. Prog. Nat. Sci. Mater. Int., 2019, 29: 50
doi: 10.1016/j.pnsc.2019.01.003
19 Li J S, Dong R F, Kou H C, et al. Texture evolution and the recrystallization behavior in a near β titanium alloy Ti-7333 during the hot-rolling process [J]. Mater. Charact., 2020, 159: 109999
doi: 10.1016/j.matchar.2019.109999
20 Xu Z W, Liu A, Wang X S. Influence of macrozones on the fatigue cracking behavior and fracture mechanisms of rolled Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2021, A824: 141824
21 Tchorzewski R M, Hutchinson W B. Effect of texture on fatigue crack path in titanium-6Al-4V [J]. Met. Sci., 1978, 12: 109
doi: 10.1179/msc.1978.12.2.109
22 Tchorzewski R M, Hutchinson W B. Anisotropy of fracture toughness in textured titanium-6Al-4V alloy [J]. Metall. Trans., 1978, 9A: 1113
23 Yan M Q, Chen L Q, Yang P, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy [J]. Acta Metall. Sin., 2021, 57: 880
23 颜孟奇, 陈立全, 杨 平 等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响 [J]. 金属学报, 2021, 57: 880
doi: 10.11900/0412.1961.2020.00352
24 Miyamoto H, Xiao T, Uenoya T, et al. Effect of simple shear deformation prior to cold rolling on texture and ridging of 16% Cr ferritic stainless steel sheets [J]. ISIJ Int., 2010, 50: 1653
doi: 10.2355/isijinternational.50.1653
25 Li W Y. Study on texture and mechanical anisotropy of Ti60 high temperature titanium alloy plates [D]. Beijing: University of Chinese Academy of Sciences, 2017
25 李文渊. Ti60高温钛合金板材织构及力学性能各向异性研究 [D]. 北京: 中国科学院大学, 2017
26 Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
doi: 10.1016/j.actamat.2016.12.069
27 Lei L, Zhao Q Y, Wu C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99: 101
doi: 10.1016/j.jmst.2021.04.069
28 Leo Prakash D G, Honniball P, Rugg D, et al. The effect of β phase on microstructure and texture evolution during thermomechanical processing of α + β Ti alloy [J]. Acta Mater., 2013, 61: 3200
doi: 10.1016/j.actamat.2013.02.008
29 Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
doi: 10.1016/j.actamat.2005.03.043
30 Wen X, Wan M P, Huang C W, et al. Strength and fracture toughness of TC21 alloy with multi-level lamellar microstructure [J]. Mater. Sci. Eng., 2019, A740-741: 121
31 Ye X W, Wan M P, Huang C W, et al. Effect of aging temperature on mechanical properties of TC21 alloy with multi-level lamellar microstructure [J]. Mater. Sci. Eng., 2022, A840: 142825
32 Won J W, Park K T, Hong S G, et al. Anisotropic yielding behavior of rolling textured high purity titanium [J]. Mater. Sci. Eng., 2015, A637: 215
33 Dong R F, Li J S, Kou H C, et al. Dependence of mechanical properties on the microstructure characteristics of a near β titanium alloy Ti-7333 [J]. J. Mater. Sci. Technol., 2019, 35: 48
doi: 10.1016/j.jmst.2018.06.018
34 Duan Q Q, Qu R T, Zhang P, et al. Intrinsic impact toughness of relatively high strength alloys [J]. Acta Mater., 2018, 142: 226
doi: 10.1016/j.actamat.2017.09.064
[1] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[2] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[3] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[4] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[5] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[13] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[14] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[15] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.