Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 257-277    DOI: 10.11900/0412.1961.2019.00391
  综述 本期目录 | 过刊浏览 |
脉冲电流调控金属熔体中的非金属夹杂物
张新房(),闫龙格
北京科技大学冶金与生态工程学院钢铁冶金新技术国家重点实验室 北京 100083
Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal
ZHANG Xinfang(),YAN Longge
State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. Acta Metall Sin, 2020, 56(3): 257-277.

全文: PDF(15896 KB)   HTML
摘要: 

通常非金属夹杂物会降低钢铁材料的性能,例如降低横向力学性能、萌生裂纹、减低疲劳寿命和诱发腐蚀。减少夹杂物的数量和改变夹杂物的形态可以显著提升钢铁材料的性能。所以,钢中夹杂物的去除以及形态控制一直以来都是研究的热点。虽然通过底吹Ar气、电磁搅拌和过滤方法可以在一定程度上去除夹杂物,但是上述方法难以有效地去除尺寸小于20 μm的夹杂物,并且不能有效地控制夹杂物的形态。最近,电流成为一种夹杂物去除与形态控制的新方法。本文简要综述了夹杂物的危害及其控制手段,并且详细回顾了电流对金属熔体中夹杂物的去除、取向和形态演变的影响,并介绍了电流控制夹杂物的3种机理:电泳、电自由能驱动、电磁斥力。电泳理论认为熔体中的夹杂物带有电荷,夹杂物在电场力的作用下平行于电流方向迁移。电自由能驱动理论和电磁斥力理论认为夹杂物垂直于电流方向迁移。电流波形显著影响夹杂物的去除效果,与直流电、交流电相比,脉冲电流具有较强的夹杂物去除能力,尤其是脉冲电流能够有效分离钢液中尺寸为5 μm以上的夹杂物。此外,脉冲电流不仅可以控制夹杂物取向与形态,还可以对气泡的形态产生影响;脉冲电流作用下夹杂物趋于细化、球化并平行于电流排列。最后,对电流控制夹杂物的研究现状进行了总结,并分析了未来的研究趋势。同时,对脉冲电流在抑制浸入式水口堵塞中的应用进行分析与展望。由于脉冲电流能耗低、夹杂物去除效果好以及工艺装备简易的优点,有望成为未来去除夹杂物、抑制水口堵塞的新技术。

关键词 脉冲电流夹杂物去除夹杂物形态浸入式水口堵塞    
Abstract

Non-metallic inclusions generally reduce the properties of steels, such as reducing transverse mechanical properties, initiating cracks, reducing fatigue life and inducing corrosion. Reducing the number and changing the morphology of inclusions can significantly improve the performance of steels. Therefore, inclusion removal and its morphology control in steel have always been the focus issue. Although the bottom-blown argon, electromagnetic stirring and filtration can remove inclusions to a certain extent, these methods are difficult to effectively remove inclusions smaller than 20 μm in size and cannot effectively control the morphology of the inclusions. Recently, electric current has become a new method for inclusion removal and morphology control. This article briefly reviews the hazards of inclusions and their control methods, and reviews the effects of current on the removal, orientation and morphological evolution of inclusions in metal melts in detail, and introduces three mechanisms of current-controlled inclusion separation: electrophoresis, electrical free energy driving and electromagnetic repulsion. Electrophoresis theory believes that inclusions in the melt are charged, and they migrate parallel to the direction of the current under the action of the electric field force. While the electrical free energy driving and electromagnetic repulsion hold that inclusions migrate perpendicular to the direction of the current. The current waveforms significantly affect the removal efficiency of inclusions. Compared with direct current and alternating current, the pulsed electric current has a stronger ability to remove inclusions, especially pulsed electric current can effectively separate inclusions with a size larger than 5 μm in the molten steel. In addition, the pulse current can not only control the orientation and morphology of the inclusions, but also affect the morphology of the bubbles; the inclusions tend to be refined, spheroidized and arranged parallel to the current under the action of the pulse current. Finally, the research status of current-controlled inclusion separation is summarized, and future research trends are analyzed. At the same time, the application and prospect of pulsed current in anti-clogging of submerged entry nozzle was also analyzed. Due to the low energy consumption, excellent inclusion removal efficiency and easy process equipment, pulsed current separation technique is expected to become a new technology for removing inclusions and suppressing nozzle blockage in the future.

Key wordselectropulsing    inclusion removal    inclusion morphology    submerged entry nozzle    clogging
收稿日期: 2019-11-15     
ZTFLH:  TF704.7  
基金资助:国家自然科学基金项目(U1860206);国家自然科学基金项目(51874023);国家自然科学基金项目(51601011);中央高校基本科研业务费项目(FRF-TP-18-003B1);海外高层次人才引进计划项目
作者简介: 张新房,男,1981年生,教授
图1  电流波形示意图
图2  电极插入方式
图 3  电磁斥力分离夹杂物示意图
图4  带不同电荷的夹杂物向电极方向迁移
图5  金属熔体中没有夹杂物和有夹杂物时的电流分布
图6  夹杂物垂直电流迁移
图7  电熔剂精炼工艺原理图
图8  电流通过金属熔体时非金属夹杂物的运动轨迹
图9  圆管和矩形管
图10  直流电作用下圆管和矩形管中夹杂物去除效率[56]
图11  电流驱动夹杂物3种效应[49]
图 12  未处理与电脉冲处理后钢液中夹杂物数量分布[49]
图13  电脉冲处理与未处理钢液中夹杂物Al2O3和MnS数量分布[67]
图14  脉冲电流处理前后试样中部MgO夹杂物尺寸分布
图15  电流处理后MnS结构示意图[74]
图16  不同结构的MnS颗粒引起的裂纹示意图[74]
图17  悬浮于金属液中的椭圆盘形非金属颗粒[77]
图18  椭圆盘形颗粒旋转过程中性质变化
图19  电流引起的夹杂物之间的相互作用
图20  夹杂物相互作用示意图[79]
图21  脉冲电流处理后钢中夹杂物的形态和分布[79]
图22  脉冲电流处理+轧制后MnS形态演化示意图
图23  钢锭中夹杂物数量分布[49,87]
图 24  气泡表面的夹杂物受力分析
图25  相对密度和夹杂物层厚度随施加脉冲电流的变化[108]
CurrentParameter (frequency, duration and current density)d / μmξ / %Ref.
AC60 Hz, -, 2.5×104 A?m-2>20>35[34]
>60>95
PDC5000 Hz, -, 1.0×103 A?m-2>5-[45]
PDC1 Hz, 60 μs, 1.6×106 A?m-2>10>90[49]
1 Hz, 60 μs, 1.6×106 A?m-2>5>80
DC-, -, 105 A?m-2--[51]
DC-, -, 1.0×106 A?m-2->50[52]
DC-, -, 3.2×106 A?m-2->84[53]
DC-, -, 2.8×106 A?m-2>20>80[55]
>10>30
DC-, -, 3.0×106 A?m-2>20>90[57]
>10>50
AC-, -, 3.9×106 A?m-2->90[58]
DC-, -, 4.0×107 A?m-2>10>100[58]
>5>95
DC-, -, 3.0×106 A?m-2>50>100[59]
>10>30
PDC-, 15 ms, 1.3×108 A?m-2>15-[62]
PDC1 Hz, 20 μs, 1.2×105 A?m-2>2-[66]
PDC50 Hz, 60 μs, 4.1×105 A?m-2>5>67[69]
PDC500 Hz, -, 6.6×104 A?m-2>5>95[72]
PDC20 kHz, -, 1.0×103 A?m-2--[108]
PDC20 kHz, -, 1.0×103 A?m-2--[109]
表1  电流去除夹杂物参数总结[34,45,49,51,52,53,55,57,58,59,62,66,69,72,108,109]
图26  不同类型电流去除夹杂物效率[34,49,54,56,57,58,68,69]
[1] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions [J]. Int. J. Fatigue, 1989, 11: 291
[2] Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy, 2010, 35: 8014
[3] Moghaddam S M, Sadeghi F, Paulson K, et al. Effect of non-metallic inclusions on butterfly wing initiation, crack formation, and spall geometry in bearing steels [J]. Int. J. Fatigue, 2015, 80: 203
[4] Liu H B, Liu J H, Michelic S K, et al. Characterization and analysis of non-metallic inclusions in low-carbon Fe-Mn-Si-Al TWIP steels [J]. Steel Res. Int., 2016, 87: 1723
[5] Guan J, Wang L Q, Zhang C W, et al. E?ects of non-metallic inclusions on the crack propagation in bearing steel [J]. Tribol. Int., 2017, 106: 123
[6] Krewerth D, Lippmann T, Weidner A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime [J]. Int. J. Fatigue, 2016, 84: 40
[7] Kim S T, Jeon S H, Lee I S, et al. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel—Part 1 [J]. Corros. Sci., 2010, 52: 1897
[8] Shibaeva T V, Laurinavichyute V K, Tsirlina G A, et al. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions [J]. Corros. Sci., 2014, 80: 299
[9] Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel [J]. Acta Mater., 1999, 47: 2751
[10] Madariaga I, Gutiérrez I. Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel [J]. Acta Mater., 1999, 47: 951
[11] Wang L Z, Yang S F, Li J S, et al. Effect of Mg addition on the refinement and homogenized distribution of inclusions in steel with different Al contents [J]. Metall. Mater. Trans., 2017, 48B: 805
[12] Birat J P. Impact of steelmaking and casting technologies on processing and properties of steel [J]. Ironmaking Steelmaking, 2001, 28: 152
[13] Bertrand C, Molinero J, Landa S, et al. Metallurgy of plastic inclusions to improve fatigue life of engineering steels [J]. Ironmaking Steelmaking, 2003, 30: 165
[14] Zheng X F, Hayes P C, Lee H G. Particle removal from liquid phase using fine gas bubbles [J]. ISIJ Int., 1997, 37: 1091
[15] Weidner A, Krewerth D, Witschel B, et al. Microstructure of non-metallic inclusions identified in cast steel 42CrMo4 after metal melt filtration by novel foam filters [J]. Steel Res. Int., 2016, 87: 1038
[16] Miki Y, Kitaoka H, Sakuraya T, et al. Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field [J]. ISIJ Int., 1992, 32: 142
[17] Liu X, Wang L M. Effects of rare earth addition on the inclusions and mechanical properties of 2205 duplex stainless steel [J]. Adv. Mater., 2012, 503: 463
[18] Wilson W G, Heaslip L J, Sommerville I D. Rare earth additions in continuously cast steel [J]. JOM, 1985, 37(9): 36
[19] Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures [J]. Materials, 2016, 9: 417
[20] Zhang L F, Liu Y, Zhang Y, et al. Transient evolution of nonmetallic inclusions during calcium treatment of molten steel [J]. Metall. Mater. Trans., 2018, 49B: 1841
[21] Kusano Y, Kawauchi Y, Wajima M, et al. Calcium treatment technologies for special steel bars and wire rods [J]. ISIJ Int., 1996, 36(Suppl): S77
[22] Kojola N, Ekerot S, Andersson M, et al. Pilot plant study of nozzle clogging mechanisms during casting of REM treated stainless steels [J]. Ironmaking Steelmaking, 2013, 38: 1
[23] Zhang L F. Several important scientific research points of non-metallic inclusions in steel [J]. Steelmaking, 2016, 32(4): 1
[23] 张立峰. 钢中非金属夹杂物几个需要深入研究的课题 [J]. 炼钢, 2016, 32(4): 1
[24] da Costa e Silva A L V. Non-metallic inclusions in steels—Origin and control [J]. J. Mater. Res. Technol., 2018, 7: 283
[25] Misra A K. A novel solidification technique of metals and alloys: Under the influence of applied potential [J]. Metall. Trans., 1985, 16A: 1354
[26] Nakada M, Shiohara Y, Flemings M C. Modification of solidification structures by pulse electric discharging [J]. ISIJ Int., 1990, 30: 27
[27] Wang X L, Dai W B, Ma C W, et al. Effect of electric current direction on recrystallization rate and texture of a Cu-Zn alloy [J]. J. Mater. Res., 2013, 28: 1378
[28] Conrad H, White J, Cao W D, et al. Effect of electric current pulses on fatigue characteristics of polycrystalline copper [J]. Mater. Sci. Eng., 1991, A145: 1
[29] Liu X B, Zhang X F. An ultrafast performance regeneration of aged stainless steel by pulsed electric current [J]. Scr. Mater., 2018, 153: 86
[30] Gao J Y, Liu X B, Zhou H F, et al. Modification of corrosion resistance of the plain carbon steels by pulsed electric current [J]. Acta Metall. Sin. (Engl. Lett., 2018, 31: 1233
[31] Conrad H. Thermally activated plastic flow of metals and ceramics with an electric field or current [J]. Mater. Sci. Eng., 2002, A322: 100
[32] Leenov D, Kolin A. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles [J]. J. Chem. Phys., 1954, 22: 683
[33] Kolin A. An electromagnetokinetic phenomenon involving migration of neutral particles [J]. Science, 1953, 117: 134
[34] Taniguchi S, Brimacombe J K. Application of pinch force to the separation of inclusion particles from liquid steel [J]. ISIJ Int., 1994, 34: 722
[35] Zhong Y B, Ren Z M, Deng K, et al. Formation and control of turbulent in metal melts purified by alternating magnetic field [J]. Chin. J. Nonferrous Met., 2001, 11: 541
[35] 钟云波, 任忠鸣, 邓 康等. 交变磁场净化金属液时金属液紊流的形成及其控制 [J]. 中国有色金属学报, 2001, 11: 541
[36] Liu Z Y, Yu J K, Yuan L, et al. Research progress of effects of external electric current on inclusions in molten steel [J]. China Metall., 2018, 28(4): 7
[36] 刘朝阳, 于景坤, 袁 磊等. 外加电流对钢中夹杂物影响的研究进展 [J]. 中国冶金, 2018, 28(4): 7
[37] Liang C L, Lin K L. The microstructure and property variations of metals induced by electric current treatment: A review [J]. Mater. Charact., 2018, 145: 545
[38] Zhang B W, Ren Z M, Deng K, et al. Effects of direct current on electromagnetic purification for liquid metals [J]. Chin. J. Computat. Phys., 2002, 19: 527
[38] 张邦文, 任忠鸣, 邓 康等. 直流电对金属液电磁净化的影响 [J]. 计算物理, 2002, 19: 527
[39] Zhang B W, Ren Z M, Zhong Y B, et al. Theoretical analysis on electromagnetic separation of inclusions from molten metal only by current [J]. J. Baotou Univ. Iron Steel Technol., 2002, 21: 228
[39] 张邦文, 任忠鸣, 钟云波等. 金属液单电流电磁净化的理论分析 [J]. 包头钢铁学院学报, 2002, 21: 228
[40] Sellier A. Migration of an insulating particle under the action of uniform ambient electric and magnetic fields. Part 2. Boundary formulation and ellipsoidal particles [J]. J. Fluid Mech., 2003, 488: 335
[41] Zhang L F, Wang S Q, Deng A P, et al. Application of electromagnetic (EM) separation technology to metal refining processes: A review [J]. Metall. Mater. Trans., 2014, 45B: 2153
[42] Paik Y H, Shin H C, Lee J M. Electrical charge of metal oxides in liquid metals [J]. Met. Mater., 1998, 4: 995
[43] Paik Y H, Yoon W J, Shin H C. Static electrification of solid oxide in liquid metal and electrical double layer at the interface [J]. J. Colloid Interface Sci., 2004, 269: 354
[44] Yang X, Zhou X L, Yu J K. Research on reducing nozzle clogging by controlling the electrical characteristics of SEN [A]. The 11th CSM Steel Congress——S02. Steelmaking and Continuous Casting [C]. Beijing: Metallurgical Industry Press, 2017: 251
[44] 杨 鑫, 周秀丽, 于景坤. 控制浸入式水口带电行为改善水口堵塞的研究 [A]. 第十一届中国钢铁年会论文集——S02.炼钢与连铸 [C]. 北京: 冶金工业出版社, 2017: 251
[45] Zhou X L. Clogging research of submerged nozzle used the pulse current [J]. Continuous Cast., 2017, 42(2): 27
[45] 周秀丽. 脉冲电流防水口堵塞的应用研究 [J]. 连铸, 2017, 42(2): 27
[46] Wang X L, Guo J D, Wang Y M, et al. Segregation of lead in Cu-Zn alloy under electric current pulses [J]. Appl. Phys. Lett., 2006, 89: 061910
[47] Dolinsky Y, Elperin T. Thermodynamics of nucleation in current-carrying conductors [J]. Phys. Rev., 1994, 50B: 52
[48] Qin R S, Bhowmik A. Computational thermodynamics in electric current metallurgy [J]. Mater. Sci. Technol., 2015, 31: 1560
[49] Zhang X F, Qin R S. Electric current-driven migration of electrically neutral particles in liquids [J]. Appl. Phys. Lett., 2014, 104: 114106
[50] Li W F. Study on purification process of aluminum melt electric flux [D]. Lanzhou: Lanzhou University of Technology, 2004
[50] 李文凤. 铝熔体电熔剂净化工艺的研究 [D]. 兰州: 兰州理工大学, 2004
[51] Bai S H, Yang G C, Zhou S R. The influence of elec-flux refining on the macrostructure of Al-4.5wt%Cu alloy [J]. Rere Met. Mater. Eng., 1996, 25(1): 41
[51] 白世鸿, 杨根仓, 周少荣. 电熔剂净化对Al-4.5wt%Cu合金宏观组织的影响 [J]. 稀有金属材料与工程, 1996, 25(1): 41
[52] Yan Y F, Li W W, Hao Y, et al. Influencing factors in molten aluminum treating by elec-flux process [J]. Nonferrous Met., 2005, 57(1): 39
[52] 阎峰云, 李文凤, 郝 远等. 电熔剂法净化处理铝熔体的影响因素 [J]. 有色金属, 2005, 57(1): 39
[53] Yan Y F, Hao Y, Huang X L, et al. Purification of molten aluminum by electro-flux [J]. Spec. Cast. Nonferrous Alloy, 2006, 26: 756
[53] 阎峰云, 郝 远, 黄秀玲等. 电熔剂法净化处理铝熔体的试验研究 [J]. 特种铸造及有色合金, 2006, 26: 756
[54] Zhong Y B, Ren Z M, Zhang B W, et al. Mechanism and efficiency of inclusion-removal in purifying molten metal by electro-flux method [J]. Chin. J. Nonferrous Met., 2004, 14: 1329
[54] 钟云波, 任忠鸣, 张邦文等. 电熔剂去除金属熔体中夹杂物的机理及效率分析 [J]. 中国有色金属学报, 2004, 14: 1329
[55] Taniguchi S, Brimacombe J K. Numerical analysis on the separation of inclusion particles by pinch force from liquid steel flowing in a rectangular pipe [J]. Tetsu Hagané, 1994, 80: 312
[55] 谷口 尚司, Brimacombe J K. ピンチカによる矩形管内溶鋼流からの介在物除去の数値解析 [J]. 鉄と鋼, 1994, 80: 312
[56] Zhang B W, Ren Z M, Zhong Y B, et al. Theoretical investigation on by-only-current electromagnetic separation of inclusion from molten metals [J]. Acta Metall. Sin. (Engl. Lett., 2002, 15: 416
[57] Wu J X. Basic study of electromagnetic separation of inclusion particles only by current [D]. Shanghai: Shanghai University, 2004
[57] 吴加雄. 单电流电磁分离夹杂物的基础研究 [D]. 上海: 上海大学, 2004
[58] Afshar M R, Aboutalebi M R, Isac M, et al. Mathematical modeling of electromagnetic separation of inclusions from magnesium melt in a rectangular channel [J]. Mater. Lett., 2007, 61: 2045
[59] Wu J X, Ren Z M, Zhang B W, et al. Electromagnetic purification of aluminum alloy melt only by alternating current [J]. Chin. J. Nonferrous Met., 2004, 14: 354
[59] 吴加雄, 任忠鸣, 张邦文等. 交流电净化铝合金熔体 [J]. 中国有色金属学报, 2004, 14: 354
[60] Zhong Y B, Ren Z M, Deng K, et al. Analysis of formation of turbulent flow in molten metal being purified by traveling magnetic field [J]. Shanghai Nonferrous Met., 1999, 20: 5
[60] 钟云波, 任忠鸣, 邓 康等. 金属电磁净化技术中金属液流动的成因分析 [J]. 上海有色金属, 1999, 20: 5
[61] Makarov S, Ludwig R, Resnick J, et al. The effect of a short pulse of current on small particles in a conducting fluid [J]. J. Nondestruct. Eval., 1999, 18: 99
[62] Korovin V M. Pressure pulse induced by a pulsed electric current in a cylindrical liquid conductor [J]. Tech. Phys., 2005, 50: 815
[63] Guo J D, Wang X L, Dai W B. Microstructure evolution in metals induced by high density electric current pulses [J]. Mater. Sci. Technol., 2015, 31: 1545
[64] Liu Y. Investigation of removing inclusions in steel and/or controlling state of inclusions by applied electric fields [D]. Anshan: University of Science and Technology Liaoning, 2012
[64] 刘 洋. 外加电场去除钢中夹杂及其形态控制的研究 [D]. 鞍山: 辽宁科技大学, 2012
[65] Zhang X F, Lu W J, Qin R S. Removal of MnS inclusions in molten steel using electropulsing [J]. Scr. Mater., 2013, 69: 453
[66] Zhang X F, Qin R S. Separation of electrically neutral non-metallic inclusions from molten steel by pulsed electric current [J]. Mater. Sci. Technol., 2017, 33: 1399
[67] Zhang X F, Qin R S. Controlled motion of electrically neutral microparticles by pulsed direct current [J]. Sci. Rep., 2015, 5: 10162
[68] Zhang G Z, Yan L G, Zhang X F. Inclusion removal in molten magnesium by pulsed electric current [J]. ISIJ Int., 2020, in press
[69] Du M C. The effect of current on inclusion and bubble in molten steel [D]. Shenyang: Northeastern University, 2013
[69] 杜明传. 电流对钢液中气泡和夹杂物的影响 [D]. 沈阳: 东北大学, 2013
[70] Shao X J, Wang X H, Wang W J, et al. In situ observation of MnS inclusion behavior in resulfurized free-cutting steel during heating [J]. Acta Metall. Sin., 2011, 47: 1210
[70] 邵肖静, 王新华, 王万军等. 加热过程中硫系易切削钢中MnS夹杂物行为的动态原位观察 [J]. 金属学报, 2011, 47: 1210
[71] Wu M, Fang W, Chen R M, et al. Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions [J]. Mater. Sci. Eng., 2019, A744: 324
[72] Dai W B, Yu J K, Du C M, et al. Refinement of inclusions in molten steel by electric current pulse [J]. Mater. Sci. Technol., 2015, 31: 1555
[73] Zhang X F, Lu W J, Qin R S. Morphology and distribution control of MnS inclusions in molten steel by electropulsing [J]. Mater. Res. Innov., 2014, 18: S4-244
[74] Zhang X F, Lu W J, Qin R S. Oriented sulphides induced by electric current in medium carbon steel [J]. Philos. Mag. Lett., 2015, 95: 101
[75] Yan J C, Li T, Shang Z Q, et al. Three-dimensional characterization of MnS inclusions in steel during rolling process [J]. Mater. Charact., 2019, 158: 109944
[76] Zhao Z C, Qin R S. Morphology and orientation selection of non-metallic inclusions in electrified molten metal [J]. Metall. Mater. Trans., 2017, 48B: 2781
[77] Qin R S. Electric-field-induced alignment of electrically neutral disk-like particles: Modelling and calculation [J]. Sci. Rep., 2017, 7: 8449
[78] Zhao Z C, Qin R S. Inclusion agglomeration in electrified molten metal: Thermodynamic consideration [J]. Mater. Sci. Technol., 2017, 33: 1404
[79] Yan L G, Zhang X F. Achieving the control of non-metallic inclusions morphology and orientation by electric current [J]. Steel Res. Int., 2019: 1900465
[80] Luo C H, St?hlberg U. An alternative way for evaluating the deformation of MnS inclusions in hot rolling of steel [J]. Scand. J. Met., 2002, 31: 184
[81] Andalib S, Hokmabad B V, Esmaeilzadeh E. Study of a single coarse bubble behavior in the presence of D.C. electric field [J]. Colloid Surf., 2013, 436A: 604
[82] Allen P H G, Karayiannis T G. Electrohydrodynamic enhancement of heat transfer and fluid flow [J]. Heat Recov. Syst. CHP, 1995, 15: 389
[83] Cho H J, Kang I S, Kweon Y C, et al. Numerical study of the behavior of a bubble attached to a tip in a nonuniform electric field [J]. Int. J. Multiphase Flow, 1998, 24: 479
[84] Herman C, Iacona E. Modeling of bubble detachment in reduced gravity under the influence of electric fields and experimental verification [J]. Heat Mass Transfer, 2004, 40: 943
[85] Rahmat A, Tofighi N, Yildiz M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method [J]. Int. J. Heat Fluid Flow, 2016, 62: 313
[86] Siedel S, Cioulachtjian S, Robinson A J, et al. Lateral coalescence of bubbles in the presence of a DC electric field [J]. Int. Commun. Heat Mass Transfer, 2016, 76: 127
[87] Zhang X F, Qin R S. Exploring the particle reconfiguration in the metallic materials under the pulsed electric current [J]. Steel Res. Int., 2018, 89: 1800062
[88] Schulze H J. Hydrodynamics of bubble-mineral particle collisions [J]. Proc. Ext. Met. Rev., 1989, 5: 43
[89] Wang L H, Lee H G, Hayes P. Prediction of the optimum bubble size for inclusion removal from molten steel by flotation [J]. ISIJ Int., 1996, 36: 7
[90] Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation [J]. Int. Mater. Rev., 2000, 45: 59
[91] Zheng H G, Chen W Q, Liu Q, et al. Investigation on clogging of submerged entry nozzle during continuous casting Ti-bearing stainless steel [J]. J. Iron Steel Res. Int., 2005, 17(1): 14
[91] 郑宏光, 陈伟庆, 刘 青等. 含钛不锈钢连铸浸入式水口结瘤的研究 [J]. 钢铁研究学报, 2005, 17(1): 14
[92] Zhao L P, Wang Y, Wang H S. Current research status of tundish nozzle clogging [J]. Steelmaking, 2007, 22(3): 59
[92] 赵李平, 王 勇, 王鸿盛. 连铸中间包水口堵塞问题的研究现状 [J]. 炼钢, 2007, 22(3): 59
[93] Lavers J D, Kadar L. Application of electromagnetic forces to reduce tundish nozzle clogging [J]. Appl. Math. Modell., 2004, 28: 29
[94] Yaun F M, Wang X H, Zhang J M, et al. Numerical simulation of tundish nozzle clogging during continuous casting [J]. Acta Metall. Sin., 2006, 42: 1109
[94] 袁方明, 王新华, 张炯明等. 连铸中间包水口堵塞的数值模拟 [J]. 金属学报, 2006, 42: 1109
[95] Nakanishi K. Japanese state of the art continuous casting process [J]. ISIJ Int., 1996, 36(Suppl.1): S14
[96] Yang M L, Cheng C G, Li Y, et al. Development of control technology and clogging mechanism for tundish nozzle in continuous casting [J]. J. Iron Steel Res. Int., 2017, 29: 773
[96] 杨明磊, 程常桂, 李 阳等. 连铸中间包水口堵塞机理及控制技术的发展 [J]. 钢铁研究学报, 2017, 29: 773
[97] Yan Z G. Research and development of structures and materials of submerged entry nozzle for thin slab continuous casting [D]. Shenyang: Northeastern University, 2011
[97] 颜正国. 薄板坯浸入式水口结构及材质的开发研究 [D]. 沈阳: 东北大学, 2011
[98] Svensson J K S, Memarpour A, Ekerot S, et al. Studies of new coating materials to prevent clogging of submerged entry nozzle (SEN) during continuous casting of Al killed low carbon steels [J]. Ironmaking Steelmaking, 2017, 44: 117
[99] Holappa L, H?m?l?inen M, Liukkonen M, et al. Thermodynamic examination of inclusion modification and precipitation from calcium treatment to solidified steel [J]. Ironmaking Steelmaking, 2003, 30: 111
[100] Bai H, Thomas B G. Effects of clogging, argon injection, and continuous casting conditions on flow and air aspiration in submerged entry nozzles [J]. Metall. Mater. Trans., 2001, 32B: 707
[101] Tian C, Yu J K, Jin E D, et al. Effect of interfacial reaction behaviour on the clogging of SEN in the continuous casting of bearing steel containing rare earth elements [J]. J. Alloys Compd., 2019, 792: 1.
[102] Liu Y B, Ge J G, Liu H L, et al. Analysis of ladle slide gate clogging in pouring RE steel [J]. Sci. Technol. Baotou Steel (Group) Corporat., 2000, 26(2): 50
[102] 刘越表, 葛建国, 刘宏玲等. 稀土钢水口堵塞的成因分析 [J]. 包钢科技, 2000, 26(2): 50
[103] Yang Y C, Luan Y K, Li D Z, et al. Effect of RE on inclusions in highly clean bearing steel [J]. Steelmaking, 2016, 32(4): 54
[103] 杨超云, 栾义坤, 李殿中等. 稀土元素对高洁净度轴承钢中夹杂物的影响研究 [J]. 炼钢, 2016, 32(4): 54
[104] Yao Y K. Exploitation of fluxes and research on mechanisms of nozzle blockage for continuous casting of RE steel [D]. Shenyang: Northeastern University, 2004
[104] 姚永宽. 稀土钢连铸粉剂开发及中间包水口结瘤机理研究 [D]. 沈阳: 东北大学, 2004
[105] Yang X, Yu J K, Liu Z Y, et al. The charged characteristics of the submerged entry nozzle used for continuous casting [J]. Ceram. Int., 2017, 43: 2881
[106] Yu J K, Yang X, Liu Z Y, et al. Anti-clogging of submerged entry nozzle through control of electrical characteristics [J]. Ceram. Int., 2017, 43: 13025
[107] Yang X, Liu Z Y, Yu J K. Anti-fouling of submerged entry nozzle with electric current pulse [J]. J. Mater. Process. Tech., 2018, 259: 341
[108] Dai W B, Zhou X L, Yang X, et al. Formation of dense inclusion buildup on submerged entry nozzle by electric current pulse [J]. Acta Metall. Sin. (Engl. Lett., 2016, 29: 500
[109] Dai W B, Yang X, Zhou X L, et al. Influence of electric current pulses on prevention of nozzle clogging [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 12
[109] 戴文斌, 杨 鑫, 周秀丽等. 利用脉冲电流控制水口堵塞的研究 [J]. 辽宁科技大学学报, 2016, 39: 12
[110] Sun Y, Ma B Y, Yu J K. Effect of an applied electric field on the clogging of continuous casting nozzle [J]. Continuous Cast., 2008, (6): 11
[110] 孙 勇, 马北越, 于景坤. 施加电场对连铸水口防堵塞性能的影响 [J]. 连铸, 2008, (6): 11
[111] Kawamoto M. Recent development of steelmaking process in Sumitomo metals [J]. J. Iron Steel Res. (Int.), 2011, 18(S2: 28
[112] Feng S C, Wang Y H, Ling H Z, et al. Clean steel production status in Sumitomo Metal [J]. World Iron Steel, 2012, 12(4): 21
[112] 冯士超, 王艳红, 梁慧智等. 住友金属洁净钢生产工艺技术现状 [J]. 世界钢铁, 2012, 12(4): 21
[1] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[2] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[3] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[4] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[5] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[6] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
[7] 李德伟,苏志坚,陈进,王强,丸川雄净,赫冀成. 钢圆坯连铸过程中渐开式电磁旋流水口数值模拟[J]. 金属学报, 2013, 49(7): 871-880.
[8] 苏志坚 李德伟 孙立为 丸川雄净 赫冀成. 圆坯连铸电磁旋流水口的数值模拟[J]. 金属学报, 2010, 46(4): 479-486.
[9] 从保强 齐铂金 周兴国 罗军. 超音频脉冲方波电流参数对2219铝合金焊缝组织和力学性能的影响[J]. 金属学报, 2009, 45(9): 1057-1062.
[10] 徐匡迪. 关于洁净钢的若干基本问题[J]. 金属学报, 2009, 45(3): 257-269.
[11] 赵远云 王宝全 郭敬东. 高密度脉冲电流处理改善1Cr13Mn13钢力学性能[J]. 金属学报, 2009, 45(11): 1325-1329.
[12] 王赟; 钟云波; 任忠鸣; 王保军; 雷作胜; 张小伟 . 离心中间包内钢液流动的数值模拟[J]. 金属学报, 2008, 44(10): 1203-1208 .
[13] 姚可夫; 邱胜宝 . 等温退火和脉冲电流处理对Fe73.5Cu1Nb3Si13.5B9非晶薄带组织和显微硬度的影响[J]. 金属学报, 2007, 42(1): 91-95 .
[14] 袁方明; 王新华; 张炯明; 王万军; 张立 . 连铸中间包水口堵塞的数值模拟[J]. 金属学报, 2006, 42(10): 1109-1114 .
[15] 白晓清; 李东辉; 张林; 赫冀成 . 流动液体中夹杂物超声去除的影响因素[J]. 金属学报, 2002, 38(5): 483-489 .