Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1261-1270    DOI: 10.11900/0412.1961.2021.00086
  研究论文 本期目录 | 过刊浏览 |
成分对真空脱锰法相变控制高硅电工钢{100}织构的影响
杨平1(), 王金华1, 马丹丹1, 庞树芳2, 崔凤娥3
1.北京科技大学 材料科学与工程学院 北京 100083
2.鞍钢集团 钢铁研究院 鞍山 114000
3.北京科技大学 新材料技术研究院 北京 100083
Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing
YANG Ping1(), WANG Jinhua1, MA Dandan1, PANG Shufang2, CUI Feng'e3
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Iron and Steel Research Institute, Angang Group, Anshan 114000, China
3.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
Ping YANG, Jinhua WANG, Dandan MA, Shufang PANG, Feng'e CUI. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. Acta Metall Sin, 2022, 58(10): 1261-1270.

全文: PDF(3502 KB)   HTML
摘要: 

在前期真空脱锰、湿氢脱碳的表面相变控制技术制备强{100}织构工艺优化工作的基础上,考察4种3%Si电工钢中成分变化对{100}织构中的立方织构、25°旋转立方织构和旋转立方织构的影响,并通过计算相图考察具有立方织构脱锰层合金的相图特点,为定量控制成分、优化织构奠定理论基础。实验结果及相图计算结果表明,在通常有利于立方织构形成的50%中等压下量下,4种合金中具有低C、低Mn的高相变点合金较快形成较强立方织构的脱锰层,该合金在真空下1100℃、30 min保温后,脱锰层中{100}晶粒的面积分数可达77.3%。

关键词 电工钢织构脱锰真空退火相变表面效应    
Abstract

Laboratory experiments demonstrate that the magnetic-beneficial {100} texture can be strongly produced using the so-called surface effect transformation treatment either in low-grade electrical steels or in high-grade 3%Si steels. In the latter case, the solid-phase transformation is introduced into Si steels by adding carbon and manganese elements. In addition, vacuum annealing and subsequent wet hydrogen decarburization are needed. Although such treatment differs remarkably from conventional industry production facilities, its superiority of producing extremely sharp {100} texture, immensely high magnetic induction, and low core loss keeps the method attractive for environmental friendly and high-efficiency rotating machines. Our previous results indicated that the heavy rolling reduction favors the rotated cube texture {100}<011> formation; however, the cube texture {100}<001> is expected due to the easiness of sheet cutting for iron core production in the industry. In this study, the influences of compositions on the formation of the cube texture, 25°-rotated cube texture, and rotated cube texture were investigated. The phase diagram features of the alloy consisting of strong cube texture were also examined. The aim is to establish the theoretical bases for quantitative control of the alloy composition suitable for cube texture in 3%Si electrical steels. Four steel compositions are designed using different combinations of carbon and manganese contents. Thus, the transformation temperatures, ferrite grain sizes, and pearlite volume fractions will be different, leading to distinct growth rates of {100} oriented grains during vacuum annealing at a constant temperature. They were cold-rolled by 50% reduction, which is beneficial for the cube texture formation. The results of experimental determination and calculated phase diagrams indicate that the alloy with lower carbon and Mn contents in the investigated four steel compositions shows a faster and stronger cube texture in the Mn-removal surface layer. The area fraction of the {100} texture in the Mn-removal layer of the alloy after vacuum annealing at 1100oC for 30 min reaches 77.3%. In addition, the suitable decarburization temperature after the formation of the Mn-removal surface layer is discussed and suggested based on the calculated phase diagrams.

Key wordselectrical steel    texture    manganese removal    vacuum annealing    transformation    surface effect
收稿日期: 2021-02-26     
ZTFLH:  TG111.5  
基金资助:国家自然科学基金项目(51771024);国家自然科学基金项目(51931002)
作者简介: 杨 平,男,1959年生,教授,博士
AlloyMass fraction of C / %Mass fraction of Mn / %Mass fraction of Si / %

TF

oC

R

%

A3

oC

A1s

oC

A1f

oC

F

%

1#0.0561.732.8790085.29977417299
2#0.0941.043.0096087.0105077676614
3#0.0901.682.86100088.597474973115
4#0.0581.072.9898090.910947707648
表1  4种合金的成分、热轧参数、平衡相变点及平衡时珠光体体积分数
图1  4种合金热轧后(冷轧前)显微组织的OM像
图2  4种合金在50%压下量下冷轧的φ2 = 45°截面取向分布函数(ODF)图
图3  4种合金冷轧后快速加热到1100℃真空退火30 min后显微组织的OM像
图4  4种合金1100℃真空退火脱锰30 min后表层组织的EBSD取向成像图及相应的{100}极图
AlloyArea fraction of {100} grains (≤ 15°) / %Average grain sizeAverage size of {100} grain / μmAverage size of {111} grain / μm
μm
1#60.99012185
2#55.0577552
3#81.39313565
4#77.312015561
表2  真空退火脱锰后4种合金表层晶粒信息
图5  4种合金中相的相对量与温度的关系
图6  4种合金对应的计算相图(温度与Mn含量的关系)
图7  4种合金中温度与C含量的关系相图
1 Sung J K, Lee D N, Wang D H, et al. Efficient generation of cube-on-face crystallographic texture in iron and its alloys [J]. ISIJ Int., 2011, 51: 284
doi: 10.2355/isijinternational.51.284
2 Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {100}<0vw> texture [J]. J. Appl. Phys., 2013, 113: 17A338
3 Sung J K, Park S M, Shim B Y, et al. Effect of Mn on <100> texture evolution in Fe-Si-Mn alloys [J]. Mater. Sci. Forum, 2012, 702-703: 730
doi: 10.4028/www.scientific.net/MSF.702-703.730
4 Xie L, Yang P, Zhang N, et al. Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation [J]. J. Magn. Magn. Mater., 2014, 356: 1
doi: 10.1016/j.jmmm.2013.12.045
5 Xie L, Yang P, Xia D S, et al. Microstructure and texture evolution in a non-oriented electrical steel during γα transformation under various atmosphere conditions [J]. J. Magn. Magn. Mater., 2015, 374: 655
doi: 10.1016/j.jmmm.2014.09.033
6 Zhang L W, Yang P, Mao W M. Phenomena of Σ3 and orientation gradients in an electrical steel applied α→γ→α transformation [J]. Acta Metall. Sin., 2017, 53: 19
6 章楼文, 杨 平, 毛卫民. 电工钢相变组织中的Σ3和取向梯度现象 [J]. 金属学报, 2017, 53: 19
7 Zhang L W, Yang P, Wang J H, et al. Transformation of {100} texture induced by surface effect in ultra-low carbon electrical steel [J]. J. Mater. Sci., 2016, 51: 8087
doi: 10.1007/s10853-016-0078-2
8 Xie L, He M T, Sun L Y, et al. Columnar grain growth in non-oriented electrical steels via plastic deformation of an initial columnar-grained solidification microstructure [J]. Mater. Lett., 2020, 258: 126797
doi: 10.1016/j.matlet.2019.126797
9 Xie L, He M T, Wang J T, et al. Abnormal growth of columnar grains and formation of Σ3 grain boundaries in non-oriented electrical steels [J]. Mater. Lett., 2020, 269: 127671
doi: 10.1016/j.matlet.2020.127671
10 Kovác̆ F, Dz̆ubinský M, Sidor Y. Columnar grain growth in non-oriented electrical steels [J]. J. Magn. Magn. Mater., 2004, 269: 333
doi: 10.1016/S0304-8853(03)00628-0
11 Yang P, Xia D S, Wang J H, et al. Influences of processing parameters on microstructures, textures and magnetic properties in a Fe-0.43Si-0.5Mn electrical steel subjected to phase transformation treatment [A]. Proceedings of 11th CSM steel congress [C]. Beijing: Metallurgical Industry Press, 2017: 1
11 杨 平, 夏冬生, 王金华 等. 相变法制备Fe-0.43Si-0.5Mn电工钢时工艺参数对组织结构和磁性能的影响 [A]. 第十一届中国钢铁年会论文集——S10. 电工钢 [C]. 北京: 冶金工业出版社, 2017: 1
12 Yang P, Zhang L W, Wang J H, et al. Improvement of texture and magnetic properties by surface effect induced transformation in non-oriented Fe-0.82Si-1.37Mn steel sheets [J]. Steel Res. Int., 2018, 89: 1800045
doi: 10.1002/srin.201800045
13 Kwon S B, Ahn Y K, Jeong Y K, et al. Evolution of cube-on-face texture in Fe-1%Si steel induced by physical contact during the phase transformation from γ to α [J]. Mater. Charact., 2020, 165: 110380
doi: 10.1016/j.matchar.2020.110380
14 Ahn Y K, Kwon S B, Jeong Y K, et al. Fabrication of cube-on-face textured Fe-1wt%Si and Fe-2wt%Si-1wt%Ni electrical steel using surface nucleation during γα phase transformation [J]. Mater. Charact., 2020, 170: 110724
doi: 10.1016/j.matchar.2020.110724
15 Xie L, Yang P, Zhang N, et al. Texture optimization for intermediate Si-containing non-oriented electrical steel [J]. J. Mater. Eng. Perform., 2014, 23: 3849
doi: 10.1007/s11665-014-1201-7
16 Tomida T, Tanaka T. Development of (100) texture in silicon steel sheets by removal of manganese and decarburization [J]. ISIJ Int., 1995, 35: 548
doi: 10.2355/isijinternational.35.548
17 Tomida T. (100)-textured 3% silicon steel sheets by manganese removal and decarburization [J]. J. Appl. Phys., 1996, 79: 5443
doi: 10.1063/1.362332
18 Tomida T, Uenoya S. Cube oriented 3%Si-1%Mn soft magnetic steel sheets with fine grain structure [J]. IEEE Trans. Magn., 2001, 37: 2318
doi: 10.1109/20.951159
19 Tomida T, Uenoya S, Sano N. Fine-grained doubly oriented silicon steel sheets and mechanism of cube texture development [J]. Mater. Trans., 2003, 44: 1106
doi: 10.2320/matertrans.44.1106
20 Tomida T. A new process to develop (100) texture in silicon steel sheets [J]. J. Mater. Eng. Perform., 1996, 5: 316
doi: 10.1007/BF02649333
21 Mao W M, Wu Y, Yu Y N, et al. Formation mechanism of texture in a new type of doubly oriented cold rolled steel [J]. Iron Steel, 2002, 37(8): 53
21 毛卫民, 吴 勇, 余永宁 等. 新型冷轧双取向硅钢组织与织构的形成机理 [J]. 钢铁, 2002, 37(8): 53
22 Wang J H, Yang P, Zhang L W, et al. Formation of a sharp {100}<011> texture in Fe-3%Si-1.7%Mn-0.05%C silicon steel sheets [J]. J. Mater. Sci., 2016, 51: 10116
doi: 10.1007/s10853-016-0240-x
23 Wang J H, Yang P, Mao W M. Retention and evolution of texture in an electrical steel under vacuum annealing [J]. J. Mater. Sci., 2017, 52: 5462
doi: 10.1007/s10853-017-0790-6
24 Wang J H, Yang P, Mao W M. Analysis of {100} texture formation in vacuum annealed electrical steel based on elastic anisotropy and surface energy anisotropy [J]. Steel. Res. Int., 2019, 90: 1800320
doi: 10.1002/srin.201800320
25 Gu C, Yang P, Mao W M. The influence of rolling process on the microstructure, texture and magnetic properties of low grades non-oriented electrical steel after phase transformation annealing [J]. Acta Metall. Sin., 2019, 55: 181
doi: 10.11900/0412.1961.2018.00187
25 顾 晨, 杨 平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响 [J]. 金属学报, 2019, 55: 181
26 Wei Z G, Yang P, Gu X F, et al. Transformation textures in pure titanium: Texture memory vs surface effect [J]. Mater. Charact., 2020, 164: 110359
doi: 10.1016/j.matchar.2020.110359
27 Walter J L. Control of texture in magnetic material by surface energy [J]. J. Appl. Phys., 1965, 36(3): 1213
doi: 10.1063/1.1714176
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[11] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[12] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.