Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 385-396    DOI: 10.11900/0412.1961.2016.00261
  本期目录 | 过刊浏览 |
冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究
张清东,林潇(),曹强,卢兴福,张勃洋,胡树山
北京科技大学机械工程学院 北京 100083
Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process
Qingdong ZHANG,Xiao LIN(),Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.
Qingdong ZHANG, Xiao LIN, Qiang CAO, Xingfu LU, Boyang ZHANG, Shushan HU. Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process[J]. Acta Metall Sin, 2017, 53(4): 385-396.

全文: PDF(2658 KB)   HTML
  
摘要: 

针对已有板形瓢曲浪形缺陷冷轧高强钢板的淬火过程,应用ABAQUS有限元分析平台及其UMAT二次开发功能,建立淬火过程温度-组织-应力应变多场耦合的有限元仿真模型,研究淬火过程高强钢板的弹塑性变形行为及其对初始板形瓢曲缺陷的改变。通过热模拟实验结果对该有限元仿真模型进行了验证,模拟再现了已瓢曲高强钢板的淬火过程及弹塑性变形,获得了板形瓢曲浪形在淬火过程中的演变规律,指出钢板宽度方向上的温度梯度以及依先后顺序相变所引起的钢板纵向延伸变形沿宽度方向上分布不均匀,导致原有板形瓢曲浪形发生改变,甚至可以生成新的瓢曲浪形。定义了描述板形瓢曲浪形改变程度的指标,如浪高变化率、浪宽变化率、浪距变化率,定量揭示横向温差、张力等工艺参数对冷轧高强钢板淬火过程板形变化的影响规律。搭建实验室冷轧钢板淬火实验研究系统,开展具有单边浪板形瓢曲缺陷钢板的淬火实验,实验结果与仿真计算结果取得定性一致。

关键词 高强钢淬火瓢曲边浪中浪数值模拟    
Abstract

Quenching is a key process in cold-rolled high strength steel manufacturing for the improvement of the material strength and plasticity. The quenching, however, may bring initial flatness defects of the steel strips, which causes problems for subsequent production process. It is thus necessary to study the flatness defects evolution during the quenching process. Using the secondary development of ABAQUS subroutine UMAT, this work establishes a temperature-microstructure-stress coupling finite element modeling (FEM) model to simulate the quenching process of the high strength steel with initial buckling defects. Thermal simulation experiments are further conducted to verify the present FEM model. Then, the elastic-plastic deformation behavior of the steel plates and its effects on flatness buckling during the quenching process is investigated using the FEM model. As a consequence, the buckling defect evolution mechanism in heat treatment process is obtained for the cold-rolled high strength steel. The flatness change or the forming of new flatness defect is mainly caused by the longitudinal extension arising from temperature gradient and the sequential phase transformation different in width and transverse directions. Change rates of the wave height, width, and length are used to describe the flatness change degree, quantifying the influence of the tension and initial transverse temperature difference on flatness change. The simulation shows that the tension has a positive correlation with the improvement of initial bucking defects. The initial edge waves become more severe after quenching along with the appearance of the new quarter waves, when the initial temperature of strip center is higher than that of the edge. On the contrary, the initial central waves become more serious when the initial temperature of strip center is lower. Meanwhile, joint impact of the tension and the initial transverse temperature difference on wave height is revealed for the application of industrial practice. Furthermore, quenching experiments of the high strength steel plates with initial single edge wave buckling defects are carried out using the experiment system in lab. Different sides of the plates quench into the water tank to reproduce the sequence of the phase change. The simulation and experiments produce consistent results qualitatively. This work makes connections between technological parameters and flatness change during quenching process, which can provide support to industrial heat treatment of high strength steel.

Key wordshigh strength steel    quenching    buckling    edge wave    central wave    numerical simulation
收稿日期: 2016-06-27     
基金资助:国家自然科学基金项目No.51575040和国家科技支撑计划项目No.2011BAE13B05资助
图1  不同张力下冷轧高强钢板淬火过程宽向位移随温度的变化
图2  存在初始边浪缺陷和存在初始中浪缺陷的模型
图3  淬火过程钢板表层马氏体体积分数变化
图4  淬火过程中钢板边浪浪高变化
图5  第I、II、III阶段钢板表层边部与中部的应变差
图6  钢板淬火完成后的厚向位移
Tension / MPa Wave height decrease / % Wave length increase / % Wave width decrease / %
5 8.58 1.10 0.40
10 15.15 1.06 0.80
15 21.29 1.03 1.20
20 28.86 1.01 1.63
25 31.97 0.97 2.00
30 36.64 0.94 2.40
表1  张力对淬火前后边浪指标变化率影响
图7  初始横向温差为10 ℃时钢板淬火后的厚向位移
图8  10 ℃初始横向温差淬火后新生四分之一浪波峰波谷厚向位移分布
图9  10 ℃初始横向温差下钢板淬火后厚向位移沿长度方向分布
图10  带钢纵向应力分布随时间的变化情况
ΔT / ℃ Wave height decrease / % Wave length increase / % Wave width decrease / %
-20 48.86 1.15 2.50
-15 47.46 1.14 2.40
-10 32.07 1.12 1.88
-5 28.08 1.07 1.75
0 26.86 1.01 1.63
5 17.71 1.07 1.00
10 -1.75 1.12 0.13
15 -7.82 1.14 -0.13
20 -19.39 1.15 -1.25
表2  初始横向温差对淬火前后边浪指标变化率的影响
ΔT / ℃ Wave shape Wave height of quarter wave / mm Wave width of quarter wave / mm Wave length of quarter wave / mm
-20 Edge wave - - -
-15 Edge wave - - -
-10 Edge wave - - -
-5 Edge wave - - -
0 Edge wave - - -
5 Edge wave + quarter wave 0.11 90.36 494.51
10 Edge wave + quarter wave 0.25 164.82 494.40
15 Edge wave + quarter wave 0.41 233.33 494.33
20 Edge wave + quarter wave 0.53 308.54 494.25
表3  初始横向温差对淬火后新生四分之一浪形的影响
Tension / MPa ΔT=0 ΔT= -10 ℃ ΔT = -20 ℃
10 15.15% 23.28% 41.32%
20 26.86% 32.07% 48.86%
30 36.64% 40.10% 55.53%
表4  不同工艺参数淬火过程后的初始边浪浪高下降比例
Tension / MPa Wave height decrease / % Wave length increase / % Wave width decrease / %
5 4.23 1.10 0.13
10 7.55 1.08 0.44
15 10.80 1.05 0.96
20 13.99 1.03 1.67
25 17.29 1.00 2.08
30 20.76 0.98 2.29
表5  张力对淬火前后中浪指标变化率的影响
图11  初始横向温差对淬火后中浪浪高、浪宽和浪距的影响
图12  初始横向温差为-20 ℃时钢板淬火后的厚向位移
图13  新生四分之一浪波峰波谷厚向位移分布和厚向位移沿长度方向分布
ΔT
Wave height of quarter wave
mm
Wave width of quarter wave
mm
Wave length of quarter wave
mm
-20 0.08 151.28 494.35
-15 0.05 137.64 494.37
-10 0.03 127.81 494.43
-5 0.02 96.84 494.63
表6  初始横向温差对钢板淬火后浪形的影响
图14  带钢纵向应力分布随时间的变化
Tension / MPa ΔT=0 ΔT=10 ℃ ΔT=20 ℃
10 7.55% 1.43% 8.77%
20 13.99% 8.18% 15.57%
30 20.76% 12.88% 22.03%
表7  有初始中浪缺陷钢板淬火过程不同工艺参数下的中浪浪高变化率
图15  不同方式淬火后钢板边浪浪高、浪宽及浪距
[1] Kang Y L.Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron Steel, 2008, 43(6): 1
[1] (康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1)
[2] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483
[2] (戎咏华. 先进超高强度-高塑性Q-P-T钢 [J]. 金属学报, 2011, 47: 1483)
[3] Wang L J, Cai Q W, Yu W, et al.Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metall. Sin., 2010, 46: 687
[3] (王立军, 蔡庆伍, 余伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46: 687)
[4] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641
[4] (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641)
[5] Jia X S, Zuo X W, Chen N L, et al.Microstructure and properties of Q235 steel treated by novel Q-P-T process[J]. Acta Metall. Sin., 2013, 49: 35
[5] (贾晓帅, 左训伟, 陈乃录等. 经新型Q-P-T工艺处理后Q235钢的组织与性能[J]. 金属学报, 2013, 49: 35)
[6] Ju B, Wu H B, Tang D, et al.Effect of microstructure evolution on mechanical properties of ultra-high strength wear resistance steel[J]. Acta Metall. Sin., 2014, 50: 1055
[6] (巨彪, 武会宾, 唐荻等. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50: 1055)
[7] Zhu D M, Liu G Y, Li L H, et al.Research of martensite transformation on technical parameters of non-restraint quenching[J]. Iron Steel, 2008, 43(1): 50
[7] (朱冬梅, 刘国勇, 李龙海等. 相变对无约束淬火控冷工艺参数的影响[J]. 钢铁, 2008, 43(1): 50)
[8] Qiao X, Yu F, Liu Y.Flatness control of thin plate in the process of quenching[J]. J. Iron Steel Res., 2011, 23(suppl.1): 159
[8] (乔馨, 于峰, 刘源. 薄规格钢板淬火过程中的板形控制[J]. 钢铁研究学报, 2011, 23(增刊1): 159)
[9] Wu Y L, Wang D C, Kong L.Analysis of transverse flatness distribution of steel plate during the quenching process[J]. Adv. Mater. Res., 2015, 1095: 689
[10] Liu G Y, Li M W, Zhang S J.Thermal numerical simulation and experiment in quenching process of medium and heavy plate[J]. J. Iron Steel Res., 2007, 19(8): 51
[10] (刘国勇, 李谋渭, 张少军. 中厚板淬火过程的热力学数值模拟及实验[J]. 钢铁研究学报, 2007, 19(8): 51)
[11] Kaseda Y, Masui T.Control of buckling and crossbow in strip processing lines[J]. Iron Steel Eng., 1994, 71: 14
[12] Zhang Q D, Chang T Z, Dai J B, et al.Finite element simulation of the transverse distribution of tensile stress in the strip during continuous annealing process[J]. J. Univ. Sci. Technol. Beijing, 2006, 28: 1162
[12] (张清东, 常铁柱, 戴江波等. 连退线上带钢张应力横向分布的有限元仿真[J]. 北京科技大学学报, 2006, 28: 1162
[13] Zhang Q D, Chang T Z, Dai J B.Theory and experiment of the strip transverse buckling under high temperature[J]. Chin. J. Mech. Eng., 2008, 44(8): 219
[13] (张清东, 常铁柱, 戴江波. 带钢高温态横向瓢曲的理论与试验[J]. 机械工程学报, 2008, 44(8): 219)
[14] Zhang Q D, Liu Z Z, Zhou X M, et al.Research on strip profile buckling deformation during continuous annealing process[J]. Shanghai Met., 2005, 27(4): 27
[14] (张清东, 刘赞赞, 周晓敏等. 带钢在连续退火过程中的板形屈曲变形原因分析[J]. 上海金属, 2005, 27(4): 27)
[15] Lu X F.Study on buckling and warping deformation of steel strip [D]. Beijing: University of Science and Technology Beijing, 2015
[15] (卢兴福. 钢板带板形瓢曲与翘曲变形行为研究 [D]. 北京: 北京科技大学, 2015)
[16] Dai J B, Zhang Q D, Chen X L, et al.Large thermo-deflection of steel strip being processed in continuous anneal furnace[J]. Chin. J. Mech. Eng., 2003, 39(12): 71
[16] (戴江波, 张清东, 陈先霖等. 连续退火炉内带钢的热态大挠度变形分析[J]. 机械工程学报, 2003, 39(12): 71)
[17] Dai J T, Zhang Q D.Analysis and experiment on central buckling and post buckling of thin cold-rolled sheet[J]. Chin. J. Mech. Eng., 2011, 47(2): 44
[17] (戴杰涛, 张清东. 冷轧薄板中浪板形缺陷的屈曲及后屈曲理论与轧制试验研究[J]. 机械工程学报, 2011, 47(2): 44)
[18] Dai J T, Zhang Q D, Qin J.Analysis of local buckling for thin cold-rolled strip[J]. Eng. Mech., 2011, 28(10): 236
[18] (戴杰涛, 张清东, 秦剑. 薄宽冷轧带钢局部板形屈曲行为解析研究[J]. 工程力学, 2011, 28(10): 236)
[19] Lequesne C, Pensis O, Renard M, et al.Roller pressure quench process of steel plate modelling [A]. Proceedings of the 14th International Conference on Material Forming, ESAFORM 2011[C]. Melville: American Institute of Physics, 2011: 115
[20] Liu Z, Wu Z J, Wu J Z.Numerical Simulation of Heat Treatment Processing [M]. Beijing: Science Press, 1996: 1
[20] (刘庄, 吴肇基, 吴景之. 热处理过程的数值模拟. 北京: 科学出版社, 1996: 1)
[21] De Oliveira W P, Savi M A, Pacheco P M C L. Finite element method applied to the quenching of steel cylinders using a multi-phase constitutive model[J]. Arch. Appl. Mech., 2013, 83: 1013
[22] Zhou Z F, Wang X Y, Gu J F.Numerical simulation of eccentric cylinder quenching process[J]. J. Mech. Eng., 2011, 47(12): 62
[22] (周志方, 王晓燕, 顾剑锋. 偏心圆环淬火过程的数值模拟[J]. 机械工程学报, 2011, 47(12): 62)
[23] Song G S, Liu X H, Wang G D, et al.Numeric simulation on the effect of phase transformation on quenching stress of 22CrMo steel[J]. J. Plast. Eng., 2006, 13(2): 75
[23] (宋广胜, 刘相华, 王国栋等. 相变对22CrMo钢淬火应力影响的数值模拟[J]. 塑性工程学报, 2006, 13(2): 75)
[24] He L F, Li H P, Zhao G Q.FEM simulation of temperature, phase-transformation and stress/strain in quenching process[J]. Trans. Mater. Heat Treat., 2011, 32(1): 128
[24] (贺连芳, 李辉平, 赵国群. 淬火过程中温度、组织及应力/应变的有限元模拟[J]. 材料热处理学报, 2011, 32(1): 128)
[25] Zhang Q D, Cao Q, Zhang X F.A modified Johnson-Cook model for advanced high-strength steels over a wide range of temperatures[J]. J. Mater. Eng. Perform., 2014, 23: 4336
[26] Sun C Y, Zeng P, Zhao S X, et al.Distortion prediction of larger-size plate for armour steel during quenching[J]. Heat Treat. Met., 2008, 33(8): 73
[26] (孙朝阳, 曾攀, 赵书行等. 装甲防护厚板淬火过程形状畸变的预测[J]. 金属热处理, 2008, 33(8): 73)
[27] Wang C, Wang Z D, Yuan G, et al.Heat transfer during quenching by plate roller quenching machine[J]. J. Iron Steel Res. Int., 2013, 20(5): 1
[28] Cheng H M, Wang H G, Chen T L.Solution of heat conduction inverse problem for steel 45 during quenching[J]. Acta Metall. Sin., 1997, 33: 467
[28] (程赫明, 王洪纲, 陈铁力. 45钢淬火过程中热传导方程逆问题求解[J]. 金属学报, 1997, 33: 467)
[29] Cheng B S, Xiao N M, Li D Z, et al.Sensitivity analysis of the effect of interfacial heat transfer coefficient on distortion simulation during quenching[J]. Acta Metall. Sin., 2012, 48: 696
[29] (程柏松, 肖纳敏, 李殿中等. 界面换热系数对淬火过程变形模拟影响的敏感性分析[J]. 金属学报, 2012, 48: 696)
[30] Wang X H, Li Y Y, Wang Y, et al.Control of asymmetric higher order flattness in cold rolling mill[J]. Steel Roll., 2008, 25(3): 25
[30] (王训宏, 李有元, 王勇等. 冷轧机组不对称高次浪形的控制[J]. 轧钢, 2008, 25(3): 25)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[10] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[12] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[13] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[14] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[15] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.