Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 787-796    DOI: 10.11900/0412.1961.2015.00617
  论文 本期目录 | 过刊浏览 |
Q460钢焊接接头组织及动态断裂行为的研究*
冯祥利1,2,王磊1(),刘杨1
1 东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室, 沈阳 110819。
2 中冶置业集团有限公司, 北京 100088。
STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS
Xiangli FENG1,2,Lei WANG1(),Yang LIU1
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 China Metallurgical Group Corporation, Beijing 100088, China
引用本文:

冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
Xiangli FENG, Lei WANG, Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. Acta Metall Sin, 2016, 52(7): 787-796.

全文: PDF(1613 KB)   HTML
摘要: 

通过调整焊接热输入研究了Q460低合金高强钢CO2气体保护药芯焊接接头的组织及其对不同温度下动态断裂韧性(JId)的影响规律, 探究了影响接头动态断裂行为的机理. 结果表明, 低热焊接输入的接头熔合区(FZ)柱状晶界面处存在仿晶界型铁素体; 随热输入增加, FZ柱状晶形态特征逐渐减弱、仿晶界铁素体消失, FZ以针状铁素体组织为主, 且随热输入的增加针状铁素体平均尺寸增大. 在室温至-70 ℃范围内, 中等热输入的焊接接头均表现出优异的动态断裂韧性, 而低热输入的接头动态断裂韧性值最低. 随温度由室温降低至-70 ℃, Q460钢焊接接头动态断裂机制发生了由延性断裂逐渐向解理脆性断裂的转变. 低热输入焊接接头FZ柱状晶界面具有平面生长特征的仿晶界铁素体, 易诱发低温下裂纹沿晶快速扩展. 研究发现, 在低温动态断裂过程中, 细小针状铁素体组织由于可有效地阻碍裂纹扩展, 成为其维持高动态断裂韧性的要因.

关键词 低合金高强钢动态断裂韧性冲击吸收功断裂行为显微组织    
Abstract

Effects of welding heat input on the microstructure and dynamic fracture toughness (JId) of the CO2 shielded arc welded joints of Q460 high strength low alloy steel were investigated. The mechanism of effects on the dynamic facture behavior of the welded joint was also discussed. The results showed that there existed the allotriomorphic ferrite at the columnar interface in the fusion zone of welded joint under the condition of low heat input. The morphological characteristics of columnar crystal in the fusion zone gradually decreased and the allotriomorphic ferrite disappeared as the heat input increased. The fusion zone was mainly composed of acicular ferrite, and its average size increased with increasing heat input. The welded joint exhibited the optimal dynamic fracture toughness under the condition of medium heat input while it showed the lowest value under low heat input within the temperature range of -70 ℃ to room temperature. When the temperature decreased from room temperature to -70 ℃, the dynamic fracture mechanism of Q460 welded joint changed from ductile fracture to brittle cleavage fracture. Under the condition of low heat input, the allotriomorphic ferrite characterized by the planar growth at the columnar interface in the fusion zone of welded joint can lead to the rapid intergranular crack propagation at low temperature. The fine acicular ferrite in the fusion zone of the welding joint obtained at medium heat input which can hinder the crack propagation during the dynamic fracture at low temperature to the greatest extent is the reason why the welded joint exhibits high dynamic fracture toughness.

Key wordslow alloy high strength steel    dynamic fracture toughness    impact absorted energy    fracture behavior    mirostructure
收稿日期: 2015-12-01     
基金资助:* 国家自然科学基金项目51371044和51571052以及中央高校基本科研业务费专项资金项目L1502027资助
图1  Q460钢CO2气体保护药芯焊接头动态断裂样品取样位置及尺寸示意图
图2  Q460钢母材(BM)原始组织
图3  不同平均热输入下Q460钢CO2气体保护药芯焊接头的组织
图4  不同平均热输入下Q460钢CO2气体保护药芯焊接头的硬度分布
图5  不同热输入下Q460钢CO2气体保护药芯焊接头的冲击吸收功及动态断裂韧性
图6  Q460钢CO2气体保护药芯焊接头的动态断裂韧性断口宏观形貌
图7  Q460钢CO2气体保护药芯焊接头的动态断裂韧性断口SEM像
图8  低热输入焊接接头在-50 ℃下的动态断裂韧性断口起裂点附近SEM像
图9  中、高热输入下的接头动态断裂韧性断口起裂点附近的SEM像
[1] Wang S T, Yang S W, Gao K W, Shen X A, He X L.Acta Metall Sin, 2008; 44: 1116
[1] (王树涛, 杨善武, 高克玮, 沈晓安, 贺信莱. 金属学报, 2008; 44: 1116)
[2] Li T J, Li G Q, Wang Y B. J Const Steel Res, 2015; 115: 283
[3] Xiao G C, Jing H Y, Xu L Y, Zhao L, Ji J C.Mater Sci Eng, 2011; A528: 3044
[4] Jiang M, Wang X H, Hu Z Y, Wang K P, Yang C W, Li S R.Mater Charact, 2015; 108: 58
[5] Wang W Y, Liu T Z, Liu J P.J Const Steel Res, 2015; 114: 100
[6] Shi G, Zhou W J, Bai Y, Lin C C.J Const Steel Res, 2014; 100: 60
[7] Mitra A, Prasad N S, Janaki Ram G D.J Mater Process Technol, 2016; 229: 181
[8] Polezhayeva H, Toumpis I A, Galloway M A, Molter L, Ahmad B, Fitzpatrick E M.Int J Fatigue, 2015; 81: 162
[9] Wang Y B, Li G Q, Chen S W.J Const Steel Res, 2012; 76: 93
[10] Berg J, Strangh?ner N.Int J Fatigue, 2016; 82: 35
[11] Nie W J, Shang C J, You Y, Zhang X B, Sundaresa S.Acta Metall Sin, 2012; 48: 797
[11] (聂文金, 尚成嘉, 由洋, 张晓兵, Sundaresa S. 金属学报, 2012; 48: 797)
[12] Saha D C, Chang I S, Park Y D.Mater Charact, 2014; 93: 40
[13] Zhang J Q, Zhang G D, He J, Zhang Y L, Zhang F J.Acta Metall Sin, 2007; 43: 1275
[13] (张建强, 张国栋, 何洁, 章应霖, 张富巨. 金属学报, 2007; 43: 1275)
[14] Ma R, Fang K, Yang J G, Liu X S, Fang H Y.J Mater Process Technol, 2014; 214: 1131
[15] Cho D W, Cho W I, Na S J.J Manuf Process, 2014; 16: 26
[16] Nascimento P M, Batista C C, Sorrija A B, Voorwald J C H.Procedia Mater Sci, 2014; 3: 744
[17] Wang C, Liu W, Li J.Soil Dyn Earthq Eng, 2015; 79: 171
[18] Mahiskar G I, Chadge R B, Ambade S P, Patil A P.Procedia Mater Sci, 2014; 5: 2522
[19] Song Q Y, Heidarpour A, Zhao X L, Han L H.Thin Wall Struct, 2016; 98: 143
[20] Vilamosa V, Clausen A H, B?rvik T, Skjervold S R, Hopperstad O S.Int J Impact Eng, 2015; 86: 223
[21] Ou Z C, Yan C, Duan Z P, Pi A G, Huang F L.Int J Impact Eng, 2012; 42: 59
[22] Xu S Q, Ruan D, Beynon J H, Rong Y H.Mater Sci Eng, 2013; A573: 132
[23] Nathan S R, Balasubramanian V, Malarvizhi S, Rao A G.Defence Technol, 2015; 11: 308
[24] Ramesh M V L, Srinivasa Rao P, Venkateswara Rao V, Phani Prabhakar K V.Mater Today: Proceedings, 2015; 2: 2532
[25] Parkes D, Westerbaan D, Nayak S S, Zhou Y, Goodwin F, Bhole S, Chen D L.Mater Des, 2014; 56: 193
[26] Sadeghian M, Shamanian M, Shafyei A.Mater Des, 2014; 60: 678
[27] Yu F, Ben Jar P Y, Hendry M.Eng Fract Mech, 2015; 146: 41
[28] Prasad K, Srinivas M, Kamat S V.Mater Sci Eng, 2014; A590: 54
[29] Kou S.Welding Metallurgy 2nd Ed.New York: John Wiley and Sons Inc, 2003: 232
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.