|
|
Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能 |
杜宗罡( ), 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成 |
西安航天动力试验技术研究所 西安 710100 |
|
Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine |
DU Zonggang( ), XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng |
Xi'an Aerospace Propulsion Test Technique Institute, Xi'an 710100, China |
引用本文:
杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
Zonggang DU,
Tao XU,
Ning LI,
Wensheng LI,
Gang XING,
Lu JU,
Lihua ZHAO,
Hua WU,
Yucheng TIAN.
Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. Acta Metall Sin, 2023, 59(10): 1335-1345.
1 |
Jang Y B, Kim T H, Sun M H, et al. Preparation of iridium catalyst and its catalytic activity over hydrazine hydrate decomposition for hydrogen production and storage [J]. Catal. Today, 2009, 146: 196
doi: 10.1016/j.cattod.2009.01.040
|
2 |
Lang C G, Jia Y, Yao X D. Recent advances in liquid-phase chemical hydrogen storage [J]. Energy Stor. Mater., 2020, 26: 290
|
3 |
Jofre J B F, Soares Neto T G, Dias F F, et al. Evaluation of Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3 catalyst performance in a 5 N satellite thruster [J]. Acta Astron., 2013, 85: 41
doi: 10.1016/j.actaastro.2012.12.008
|
4 |
Prasad V, Vasanthkumar M S. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition [J]. J. Nanopart. Res., 2015, 17: 398
doi: 10.1007/s11051-015-3199-7
|
5 |
Kang W, Guo H, Varma A. Noble-metal-free NiCu/CeO2 catalysts for H2 generation from hydrous hydrazine [J]. Appl. Catal., 2019, 249B: 54
|
6 |
Zou H T, Guo F, Luo M H, et al. La(OH)3-decorated NiFe nanoparticles as efficient catalyst for hydrogen evolution from hydrous hydrazine and hydrazine borane [J]. Int. J. Hydrogen Energy, 2020, 45: 11641
doi: 10.1016/j.ijhydene.2020.02.074
|
7 |
Tong D G. Retraction: Mesoporous multiwalled carbon nanotubes as supports for monodispersed iron-boron catalysts: Improved hydrogen generation from hydrous hydrazine decomposition [J]. J. Mater. Chem., 2020, 8A: 6908
|
8 |
He L, Huang Y Q, Liu X Y, et al. Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition [J]. Appl. Catal., 2014, 147B: 779
|
9 |
Zhong Y J, Dai H B, Zhu M, et al. Catalytic decomposition of hydrous hydrazine over Ni-Pt/La2O3 catalyst: A high-performance hydrogen storage system [J]. Int. J. Hydrogen Energy, 2016, 41: 11042
doi: 10.1016/j.ijhydene.2016.03.207
|
10 |
Chen Y, Wang L, Zhai Y N, et al. Pd-Ni nanoparticles supported on reduced graphene oxides as catalysts for hydrogen generation from hydrazine [J]. RSC Adv., 2017, 7: 32310
doi: 10.1039/C7RA04390B
|
11 |
Qiu Y P, Yin H, Dai H, et al. Tuning the surface composition of Ni/meso-CeO2 with iridium as an efficient catalyst for hydrogen generation from hydrous hydrazine [J]. Chem. Eur. J., 2018, 24: 4902
doi: 10.1002/chem.v24.19
|
12 |
Gao Y, Wang Q, He T, et al. Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting [J]. Inorg. Chem. Front., 2019, 6: 2686
doi: 10.1039/C9QI01005J
|
13 |
Hong X L, Yao Q L, Huang M L, et al. Bimetallic NiIr nanoparticles supported on lanthanum oxy-carbonate as highly efficient catalysts for hydrogen evolution from hydrazine borane and hydrazine [J]. Inorg. Chem. Front., 2019, 6: 2271
doi: 10.1039/C9QI00848A
|
14 |
Firdous N, Janjua N K, Qazi I, et al. Optimal Co-Ir bimetallic catalysts supported on γ-Al2O3 for hydrogen generation from hydrous hydrazine [J]. Int. J. Hydrogen Energy, 2016, 41: 984
doi: 10.1016/j.ijhydene.2015.10.084
|
15 |
Zhao P P, Cao N, Su J, et al. NiIr nanoparticles immobilized on the pores of MIL-101 as highly efficient catalyst toward hydrogen generation from hydrous hydrazine [J]. ACS Sustain. Chem. Eng., 2015, 3: 1086
doi: 10.1021/acssuschemeng.5b00009
|
16 |
Shi Q, Qiu Y P, Dai H, et al. Study of formation mechanism of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine [J]. J. Alloys Compd., 2019, 787: 1187
doi: 10.1016/j.jallcom.2019.01.378
|
17 |
Zhao P P, Cao N, Luo W, et al. Nanoscale MIL-101 supported RhNi nanoparticles: An efficient catalyst for hydrogen generation from hydrous hydrazine [J]. J. Mater. Chem., 2015, 3A: 12468
|
18 |
Xu L X, Liu N, Hong B, et al. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine [J]. RSC Adv., 2016, 6: 31687
doi: 10.1039/C6RA01335J
|
19 |
Wang W, Hong X L, Yao Q L, et al. Bimetallic Ni-Pt nanoparticles immobilized on mesoporous N-doped carbon as a highly efficient catalyst for complete hydrogen evolution from hydrazine borane [J]. J. Mater. Chem., 2020, 8A: 13694
|
20 |
Karatas Y, Gülcan M, Zahmakiran M. Silica supported ternary NiRuPt alloy nanoparticles: Highly efficient heterogeneous catalyst for H2 generation via selective decomposition of hydrous hydrazine in alkaline solution [J]. Int. J. Hydrogen Energy, 2020, 45: 27098
doi: 10.1016/j.ijhydene.2020.07.048
|
21 |
Qiu Y P, Dai H, Dai H B, et al. Tuning surface composition of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine decomposition [J]. Acta Metall. Sin., 2018, 54: 1289
|
21 |
丘玉萍, 戴 豪, 戴洪斌 等. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控 [J]. 金属学报, 2018, 54: 1289
doi: 10.11900/0412.1961.2017.00481
|
22 |
Chen J M, Zou H T, Yao Q L, et al. Cr2O3-modified NiFe nanoparticles as a noble-metal-free catalyst for complete dehydrogenation of hydrazine in aqueous solution [J]. Appl. Surf. Sci., 2020, 501: 144247
doi: 10.1016/j.apsusc.2019.144247
|
23 |
Dai H B, Zhong Y J, Wang P. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst [J]. Prog. Nat. Sci.: Mater. Int., 2017, 27: 121
doi: 10.1016/j.pnsc.2016.12.012
|
24 |
Wang Y T, Pan L, Chen Y X, et al. Mo-doped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials [J]. Int. J. Hydrogen Energy, 2020, 45: 15560
doi: 10.1016/j.ijhydene.2020.04.061
|
25 |
Dai H, Dai H B, Zhong Y J, et al. Kinetics of catalytic decomposition of hydrous hydrazine over CeO2-supported bimetallic Ni-Pt nanocatalysts [J]. Int. J. Hydrogen Energy, 2017, 42: 5684
doi: 10.1016/j.ijhydene.2016.10.160
|
26 |
Soares Neto T G, Cobo A J G, Cruz G M. Evolution of morphologic properties on the preparation of Ir/Al2O3 catalysts with high metallic contents [J]. Appl. Surf. Sci., 2005, 240: 355
doi: 10.1016/j.apsusc.2004.07.002
|
27 |
Zhang J S, Delgass W N, Fisher T S, et al. Kinetics of Ru-catalyzed sodium borohydride hydrolysis [J]. J. Power Sources, 2007, 164: 772
doi: 10.1016/j.jpowsour.2006.11.002
|
28 |
Zhong Y J, Dai H B, Wang P. Preparation of Ni-Pt/La2O3 catalyst and its kinetics study of hydrous hydrazine for hydrogen generation [J]. Acta Metall. Sin., 2016, 52: 505
|
28 |
钟玉洁, 戴洪斌, 王 平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究 [J]. 金属学报, 2016, 52: 505
doi: 10.11900/0412.1961.2015.00531
|
29 |
Al-Thubaiti K S, Khan Z. Trimetallic nanocatalysts to enhanced hydrogen production from hydrous hydrazine: The role of metal centers [J]. Int. J. Hydrogen Energy, 2020, 45: 13960
doi: 10.1016/j.ijhydene.2020.03.093
|
30 |
Motta D, Barlocco I, Bellomi S, et al. Hydrous hydrazine decomposition for hydrogen production using of Ir/CeO2: Effect of reaction parameters on the activity [J]. Nanomaterials, 2021, 11: 1340
doi: 10.3390/nano11051340
|
31 |
Contour J P, Pannetier G. Hydrazine decomposition over a supported iridium catalyst [J]. J. Catal., 1972, 24: 434
doi: 10.1016/0021-9517(72)90127-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|