Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1335-1345    DOI: 10.11900/0412.1961.2021.00337
  研究论文 本期目录 | 过刊浏览 |
Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能
杜宗罡(), 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成
西安航天动力试验技术研究所 西安 710100
Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine
DU Zonggang(), XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng
Xi'an Aerospace Propulsion Test Technique Institute, Xi'an 710100, China
引用本文:

杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
Zonggang DU, Tao XU, Ning LI, Wensheng LI, Gang XING, Lu JU, Lihua ZHAO, Hua WU, Yucheng TIAN. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. Acta Metall Sin, 2023, 59(10): 1335-1345.

全文: PDF(3029 KB)   HTML
摘要: 

采用一种简单的浸渍-还原工艺制备出镍-铱/氧化铝(Ni-Ir/Al2O3)负载型催化剂用于水合肼(N2H4·H2O)催化分解制氢。该催化剂是将活性组分Ni-Ir负载于颗粒状Al2O3载体上制备而成,采用TEM、XRD、XPS、BET和H2-TPD等对其结构进行表征,并结合N2H4·H2O催化分解制氢实验开展了催化剂配方优化、催化反应动力学及循环耐久性研究。结果表明,粒径2~4 nm的Ni-Ir合金活性金属均匀负载于Al2O3载体表面,Ni60Ir40/Al2O3催化剂在293~353 K温度范围内均表现出优异的肼催化分解活性(> 200 h-1),在该宽温域范围内的制氢选择性高达99%以上,且该催化剂具有优异的耐久性,在303 K条件下循环5 cyc后仍保持99%以上的氢选择性,而反应速率仅由249.2 h-1略减至225.0 h-1,活性衰减约9.7%。此外,对N2H4·H2O分解制氢反应动力学及各相关参数的影响进行了研究,包括温度、N2H4·H2O浓度、NaOH助剂浓度和催化剂用量,得到其反应动力学方程为r = -k[N2H4·H2O]0.346/0.054[NaOH]0.307[Catalyst]1.004,并初步探究了催化剂在制氢反应过程的活性衰减原因。

关键词 催化剂水合肼制氢反应动力学    
Abstract

Hydrogen is clean energy that can replace traditional fossil fuels in the future because of its high energy density, easy recharging, and availability of current liquid fuel infrastructure. However, the polymer-electrolyte membrane fuel cell requires controlled storage and efficient hydrogen release. Recently, liquid-phase chemical hydrogen storage materials with high gravimetric hydrogen density have emerged as promising candidates to overcome such challenges. Among these materials of interest, hydrous hydrazine (N2H4·H2O) is the best candidate; however, it has not been fully explored as an alternative for chemical hydrogen storage applications. A catalyst is essential to hydrogen production at a sufficient reaction rate for N2H4·H2O-based hydrogen generation systems. In this study, a series of supported Ni100 - x Ir x /Al2O3 catalysts were prepared using simple impregnation, roasting, and reduction method. The effect of reaction conditions on the activity and selectivity was evaluated in decomposing N2H4·H2O to hydrogen. The phase/structure of the catalysts was characterized using XRD, TEM, XPS, BET, and H2-TPD to gain insight into the catalytic performance of the Ni100 - x Ir x /Al2O3 catalysts. It indicated that the Ni60Ir40/Al2O3 catalyst, comprising Ni-Ir alloy nanoparticles with an average size of 2-4 nm and crystalline γ-Al2O3, exhibited excellent catalytic activity (> 200 h-1) and selectivity (> 99%) toward hydrogen generation from N2H4·H2O at different temperatures, from 293 K to 353 K. The Ni60Ir40/Al2O3 catalyst is durable and stable; however, the catalytic activity decreased from 249.2 to 225.0 h-1 (~9.7%) after five runs with 99% H2 selectivity at 323 K toward the dehydrogenation of N2H4·H2O. In addition, parameters, such as temperature, N2H4·H2O and NaOH concentration, and catalyst mass on N2H4·H2O decomposition were investigated over the Ni60Ir40/Al2O3 catalyst. The kinetic rate equation for catalytic decomposition of N2H4·H2O could be represented using the following expression: r = -k[N2H4·H2O]0.346/0.054[NaOH]0.307[Catalyst]1.004, where k = 4.62 × 109exp(-5088.49 / T). The results could provide a theoretical foundation for applying N2H4·H2O as a promising hydrogen storage material.

Key wordscatalyst    hydrous hydrazine    hydrogen generation    reaction kinetics
收稿日期: 2021-08-15     
ZTFLH:  O643  
基金资助:陕西省特种能源化学与材料重点实验室开放基金项目(SPCF-SKL-2020-0006)
通讯作者: 杜宗罡,165s8yf@163.com,主要从事新型液体推进剂及相关技术的研究
Corresponding author: DU Zonggang, professor, Tel: (029)85602796, E-mail: 165s8yf@163.com
作者简介: 杜宗罡,男,1971年生,研究员,硕士
图1  Ni100 - x Ir x /Al2O3系列催化剂的TEM像
图2  Ni100 - x Ir x /Al2O3催化剂XRD谱
图3  Ni100 - x Ir x /Al2O3催化剂样品XPS测试结果
图4  Al2O3载体和Ni60Ir40/Al2O3催化剂样品的N2吸/脱附等温线曲线
SampleSpecific surface area / (cm2·g-1)Pore volume / (mL·g-1)Pore diameter / nm
Al2O3195.250.335.3
Ni60Ir40/Al2O3171.830.284.8
表1  Al2O3载体和Ni60Ir40/Al2O3催化剂样品BET测试结果
图5  Ni100 - x Ir x /Al2O3催化N2H4·H2O分解制氢性能及Ir含量对催化活性及制氢选择性的影响
Catalyst sampleH2 selectivity / %r / h-1
Ni/Al2O388.382.8
NiIr0.1/Al2O3> 9910.7
Ni99Ir1/Al2O3> 9947.4
Ni90Ir10/Al2O3> 99109.8
Ni80Ir20/Al2O3> 99125.0
Ni60Ir40/Al2O3> 99249.2
Ni40Ir60/Al2O396.25321.4
Ni20Ir80/Al2O321.03642.9
Ir/Al2O38.58725.8
表2  Ni100 - x Ir x /Al2O3系列催化剂催化N2H4·H2O分解性能数据对比
图6  反应温度对Ni60Ir40/Al2O3和NiIr0.1/Al2O3催化N2H4·H2O分解制氢性能的影响,以及利用Arrhenius方程求解其活化能时的反应速率
图7  不同浓度N2H4·H2O催化分解生成的气体体积(VH2+N2)与时间线性关系曲线,N2H4·H2O浓度对Ni60Ir40/Al2O3在303 K条件下催化分解反应制氢速率的影响,以及高、低浓度条件下lnr与ln[N2H4·H2O]的拟合关系
图8  NaOH浓度对Ni60Ir40/Al2O3催化N2H4·H2O分解反应制氢的影响,及lnr对ln[NaOH]的拟合关系
图9  Ni60Ir40/Al2O3催化剂浓度对N2H4·H2O催化分解反应速率的影响,及lnrN2H4对ln[catalyst]拟合关系
图10  Ni60Ir40/Al2O3催化N2H4·H2O分解制氢循环耐久性测试曲线和反应前后催化剂的H2-TPD曲线
1 Jang Y B, Kim T H, Sun M H, et al. Preparation of iridium catalyst and its catalytic activity over hydrazine hydrate decomposition for hydrogen production and storage [J]. Catal. Today, 2009, 146: 196
doi: 10.1016/j.cattod.2009.01.040
2 Lang C G, Jia Y, Yao X D. Recent advances in liquid-phase chemical hydrogen storage [J]. Energy Stor. Mater., 2020, 26: 290
3 Jofre J B F, Soares Neto T G, Dias F F, et al. Evaluation of Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3 catalyst performance in a 5 N satellite thruster [J]. Acta Astron., 2013, 85: 41
doi: 10.1016/j.actaastro.2012.12.008
4 Prasad V, Vasanthkumar M S. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition [J]. J. Nanopart. Res., 2015, 17: 398
doi: 10.1007/s11051-015-3199-7
5 Kang W, Guo H, Varma A. Noble-metal-free NiCu/CeO2 catalysts for H2 generation from hydrous hydrazine [J]. Appl. Catal., 2019, 249B: 54
6 Zou H T, Guo F, Luo M H, et al. La(OH)3-decorated NiFe nanoparticles as efficient catalyst for hydrogen evolution from hydrous hydrazine and hydrazine borane [J]. Int. J. Hydrogen Energy, 2020, 45: 11641
doi: 10.1016/j.ijhydene.2020.02.074
7 Tong D G. Retraction: Mesoporous multiwalled carbon nanotubes as supports for monodispersed iron-boron catalysts: Improved hydrogen generation from hydrous hydrazine decomposition [J]. J. Mater. Chem., 2020, 8A: 6908
8 He L, Huang Y Q, Liu X Y, et al. Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition [J]. Appl. Catal., 2014, 147B: 779
9 Zhong Y J, Dai H B, Zhu M, et al. Catalytic decomposition of hydrous hydrazine over Ni-Pt/La2O3 catalyst: A high-performance hydrogen storage system [J]. Int. J. Hydrogen Energy, 2016, 41: 11042
doi: 10.1016/j.ijhydene.2016.03.207
10 Chen Y, Wang L, Zhai Y N, et al. Pd-Ni nanoparticles supported on reduced graphene oxides as catalysts for hydrogen generation from hydrazine [J]. RSC Adv., 2017, 7: 32310
doi: 10.1039/C7RA04390B
11 Qiu Y P, Yin H, Dai H, et al. Tuning the surface composition of Ni/meso-CeO2 with iridium as an efficient catalyst for hydrogen generation from hydrous hydrazine [J]. Chem. Eur. J., 2018, 24: 4902
doi: 10.1002/chem.v24.19
12 Gao Y, Wang Q, He T, et al. Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting [J]. Inorg. Chem. Front., 2019, 6: 2686
doi: 10.1039/C9QI01005J
13 Hong X L, Yao Q L, Huang M L, et al. Bimetallic NiIr nanoparticles supported on lanthanum oxy-carbonate as highly efficient catalysts for hydrogen evolution from hydrazine borane and hydrazine [J]. Inorg. Chem. Front., 2019, 6: 2271
doi: 10.1039/C9QI00848A
14 Firdous N, Janjua N K, Qazi I, et al. Optimal Co-Ir bimetallic catalysts supported on γ-Al2O3 for hydrogen generation from hydrous hydrazine [J]. Int. J. Hydrogen Energy, 2016, 41: 984
doi: 10.1016/j.ijhydene.2015.10.084
15 Zhao P P, Cao N, Su J, et al. NiIr nanoparticles immobilized on the pores of MIL-101 as highly efficient catalyst toward hydrogen generation from hydrous hydrazine [J]. ACS Sustain. Chem. Eng., 2015, 3: 1086
doi: 10.1021/acssuschemeng.5b00009
16 Shi Q, Qiu Y P, Dai H, et al. Study of formation mechanism of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine [J]. J. Alloys Compd., 2019, 787: 1187
doi: 10.1016/j.jallcom.2019.01.378
17 Zhao P P, Cao N, Luo W, et al. Nanoscale MIL-101 supported RhNi nanoparticles: An efficient catalyst for hydrogen generation from hydrous hydrazine [J]. J. Mater. Chem., 2015, 3A: 12468
18 Xu L X, Liu N, Hong B, et al. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine [J]. RSC Adv., 2016, 6: 31687
doi: 10.1039/C6RA01335J
19 Wang W, Hong X L, Yao Q L, et al. Bimetallic Ni-Pt nanoparticles immobilized on mesoporous N-doped carbon as a highly efficient catalyst for complete hydrogen evolution from hydrazine borane [J]. J. Mater. Chem., 2020, 8A: 13694
20 Karatas Y, Gülcan M, Zahmakiran M. Silica supported ternary NiRuPt alloy nanoparticles: Highly efficient heterogeneous catalyst for H2 generation via selective decomposition of hydrous hydrazine in alkaline solution [J]. Int. J. Hydrogen Energy, 2020, 45: 27098
doi: 10.1016/j.ijhydene.2020.07.048
21 Qiu Y P, Dai H, Dai H B, et al. Tuning surface composition of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine decomposition [J]. Acta Metall. Sin., 2018, 54: 1289
21 丘玉萍, 戴 豪, 戴洪斌 等. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控 [J]. 金属学报, 2018, 54: 1289
doi: 10.11900/0412.1961.2017.00481
22 Chen J M, Zou H T, Yao Q L, et al. Cr2O3-modified NiFe nanoparticles as a noble-metal-free catalyst for complete dehydrogenation of hydrazine in aqueous solution [J]. Appl. Surf. Sci., 2020, 501: 144247
doi: 10.1016/j.apsusc.2019.144247
23 Dai H B, Zhong Y J, Wang P. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst [J]. Prog. Nat. Sci.: Mater. Int., 2017, 27: 121
doi: 10.1016/j.pnsc.2016.12.012
24 Wang Y T, Pan L, Chen Y X, et al. Mo-doped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials [J]. Int. J. Hydrogen Energy, 2020, 45: 15560
doi: 10.1016/j.ijhydene.2020.04.061
25 Dai H, Dai H B, Zhong Y J, et al. Kinetics of catalytic decomposition of hydrous hydrazine over CeO2-supported bimetallic Ni-Pt nanocatalysts [J]. Int. J. Hydrogen Energy, 2017, 42: 5684
doi: 10.1016/j.ijhydene.2016.10.160
26 Soares Neto T G, Cobo A J G, Cruz G M. Evolution of morphologic properties on the preparation of Ir/Al2O3 catalysts with high metallic contents [J]. Appl. Surf. Sci., 2005, 240: 355
doi: 10.1016/j.apsusc.2004.07.002
27 Zhang J S, Delgass W N, Fisher T S, et al. Kinetics of Ru-catalyzed sodium borohydride hydrolysis [J]. J. Power Sources, 2007, 164: 772
doi: 10.1016/j.jpowsour.2006.11.002
28 Zhong Y J, Dai H B, Wang P. Preparation of Ni-Pt/La2O3 catalyst and its kinetics study of hydrous hydrazine for hydrogen generation [J]. Acta Metall. Sin., 2016, 52: 505
28 钟玉洁, 戴洪斌, 王 平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究 [J]. 金属学报, 2016, 52: 505
doi: 10.11900/0412.1961.2015.00531
29 Al-Thubaiti K S, Khan Z. Trimetallic nanocatalysts to enhanced hydrogen production from hydrous hydrazine: The role of metal centers [J]. Int. J. Hydrogen Energy, 2020, 45: 13960
doi: 10.1016/j.ijhydene.2020.03.093
30 Motta D, Barlocco I, Bellomi S, et al. Hydrous hydrazine decomposition for hydrogen production using of Ir/CeO2: Effect of reaction parameters on the activity [J]. Nanomaterials, 2021, 11: 1340
doi: 10.3390/nano11051340
31 Contour J P, Pannetier G. Hydrazine decomposition over a supported iridium catalyst [J]. J. Catal., 1972, 24: 434
doi: 10.1016/0021-9517(72)90127-3
[1] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[3] 吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
[4] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
[5] 杨晓丹, 姜春海, 杨振明, 张劲松. 泡沫SiC负载钴基结构化催化剂的制备及其催化性能*[J]. 金属学报, 2014, 50(6): 762-768.
[6] 张俊善; 汪涛; 祝美丽; 刘瑞岩 . 燃烧合成TiAl3化学反应动力学研究[J]. 金属学报, 2002, 38(10): 1027-1030 .
[7] 陈祖耀;陈■;朱玉瑞;陈文明;钱逸泰;杨丽. 紫外射线辐照制备Cu_2O超细粉及其宏观动力学[J]. 金属学报, 1997, 33(3): 330-336.
[8] 兰尧中;刘纯鹏. 催化还原碳钛磁铁矿反应动力学[J]. 金属学报, 1996, 32(5): 502-503.
[9] 孙笠;宋启洪;胡壮麒. 急冷Cu_(30)Al_(70)合金的结构及催化特性[J]. 金属学报, 1996, 32(1): 63-68.
[10] 孙守金;魏永良;刘敏;李敏君. 碳纤维表面气相生长碳晶须[J]. 金属学报, 1993, 29(4): 62-67.
[11] 朱联锡;邹四维. 高频等离子法制取超细氮化钛反应动力学研究[J]. 金属学报, 1990, 26(1): 135-140.