Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 375-384    DOI: 10.11900/0412.1961.2021.00230
  研究论文 本期目录 | 过刊浏览 |
孪生诱发软化与强化效应的Cu晶体塑性行为模拟
郭祥如1,2, 申俊杰1,2()
1.天津理工大学 天津市先进机电系统设计与智能控制重点实验室 天津 300384
2.天津理工大学 机电工程国家级实验教学示范中心 天津 300384
Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects
GUO Xiangru1,2, SHEN Junjie1,2()
1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
2.National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
引用本文:

郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
Xiangru GUO, Junjie SHEN. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. Acta Metall Sin, 2022, 58(3): 375-384.

全文: PDF(1650 KB)   HTML
摘要: 

基于晶体塑性理论,考虑孪生软化效应建立了描述孪晶形核、增殖和长大的位错密度基晶体塑性有限元模型。应用该模型揭示了不同晶体取向Cu单晶拉伸变形过程中位错滑移、孪生激活及其交互作用下的宏观塑性行为演化规律,进一步分析了Cu多晶拉伸变形过程中晶粒间交互作用对孪生软化、应变硬化等宏观塑性行为的影响。结果表明:孪生具有明显的取向效应,在孪生主导塑性条件下,Cu单晶塑性变形过程中孪晶增殖导致应力-应变曲线存在明显的应力突降现象,其塑性变形分为滑移、孪生及位错与孪晶交互作用3个阶段;此外,随着饱和孪晶体积分数增加,Cu单晶塑性变形过程中第3阶段的应变硬化率也随之提升。进一步模拟Cu多晶拉伸变形的塑性行为可知,在晶粒间交互作用下孪晶形核、增殖和长大过程中不会出现应力突降现象,与Cu单晶相比整个塑性变形过程具有更高的应变硬化率;Cu多晶塑性变形过程中位错密度在晶界处出现集中现象,孪晶也容易在晶界处形成。

关键词 晶体塑性孪生软化取向效应应变硬化塑性变形    
Abstract

Dislocation slip and twinning are the main deformation mechanisms dominating plastic behavior of crystalline materials, such as twinning-induced plasticity steel, Cu, Mg, and their alloys. The influence of twinning and interaction between dislocations and twins on the plastic deformation of crystal materials is complex. On the one hand, a sudden stress drop in the stress-strain curve during twin nucleation, propagation, and growth (TNPG) of crystal materials, i.e., the twinning softening effect, is evident. On the other hand, the interaction between twins and dislocations demonstrates the strengthening effect of plastic deformation. Polycrystalline materials are used in engineering applications, and twin nucleation corresponds to different strains in each grain. Therefore, determining the influence of twin softening and strengthening effects on plastic deformation of polycrystalline materials is difficult. In this work, a crystal plastic finite element model of Cu, considering the twinning softening effect, was developed to describe the TNPG process based on the crystal plasticity theory. The method was used to reveal the influence of twins' activation and their interaction with dislocations on strain hardening during the tension of Cu single crystal and polycrystal. The results show that twinning has an evident orientation effect. Under twinning favorable orientation, a sudden stress drop in the stress-strain curve caused by twinning propagation during plastic deformation of Cu single crystal is evident, and the total plastic deformation can be divided into three stages: slip, twinning, and interaction between dislocations and twins. Compared with Cu single crystal, the stress-strain curve changes smoothly and the strain hardening rate is higher during the tension of Cu polycrystal. Meanwhile, the dislocation density is concentrated at the grain boundary, and twins are easy to form at the grain boundary during the plastic deformation of Cu polycrystal.

Key wordscrystal plasticity    twining softening    orientation effect    strain hardening    plastic deformation
收稿日期: 2021-05-27     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(52105393);天津市自然科学基金项目(18JCYBJC88700)
作者简介: 郭祥如,男,1989年生,博士
图1  Cu单晶拉伸过程的晶体塑性有限元模型示意图
ParameterValueUnit
C11[28]168GPa
C12[28]121GPa
C44[28]75GPa
ft[2,31]0.7
γ˙0[29,30]0.001s-1
m[29,30]0.024
s0[29,30]5MPa
μ[28]48GPa
b[28]0.025nm
ρ0[29,30]1012m-2
kr[29,30]6
kf[29,30]0.3
e[2,31]220nm
D[2,31]3mm
s0, β150MPa
s1, β60MPa
sg, β110MPa
fg, β[23]0.005
h0, β[23]70
h1, β[23]0
表1  CPFE模型中Cu单晶材料参数[2,23,28~31]
图2  Cu单晶沿[541]和[163]取向拉伸变形过程中真应力和孪晶体积分数随应变演化的模拟与实验[2,28]结果
图3  Cu单晶沿[541]取向拉伸变形过程中各滑移系和孪生系的激活演化结果
图4  [541]取向下不同饱和孪晶体积Cu单晶拉伸变形过程中真应力、应变硬化率和位错密度演化结果
图5  Cu多晶拉伸过程晶体塑性有限元模型示意图
图6  Cu多晶拉伸变形过程中真应力、位错密度和孪晶体积分数随应变的演化曲线
图7  不同取向Cu单晶和多晶变形过程中的应变硬化演化曲线
图8  多晶Cu拉伸变形后对应的位错密度和孪晶体积分布
图9  多晶Cu拉伸变形过程中不同应变对应的孪晶体积分布(a) ε = 0.32 (b) ε = 0.46 (c) ε = 0.67 (d) ε = 0.85
1 Guo X R, Sun C Y, Li R, et al. A dislocation density based model for twinning induced softening of TWIP steel [J]. Comput. Mater. Sci., 2017, 139: 8
2 Niewczas M, Basinski Z S, Basinski S J, et al. Deformation of copper single crystals to large strains at 4.2K—I. Mechanical response and electrical resistivity [J]. Philos. Mag., 2001, 81A: 1121
3 Seo J H, Park H S, Yoo Y, et al. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires [J]. Nano Lett., 2013, 13: 5112
4 Liang Z Y, Li Y Z, Huang M X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel [J]. Scr. Mater., 2016, 112: 28
5 Luo Z C, Huang M X. Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels [J]. Scr. Mater., 2018, 142: 28
6 Paramatmuni C, Zheng Z B, Rainforth W M, et al. Twin nucleation and variant selection in Mg alloys: An integrated crystal plasticity modelling and experimental approach [J]. Int. J. Plast., 2020, 135: 102778
7 Zhi H H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2020, 195: 371
8 Bertin N, Sills R B, Cai W. Frontiers in the simulation of dislocations [J]. Annu. Rev. Mater. Res., 2020, 50: 437
9 Zhang J, Li H W, Sun X X, et al. A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. Int. J. Plast., 2020, 135: 102804
10 Agaram S, Kanjarla A K, Bhuvaraghan B, et al. Dislocation density based crystal plasticity model incorporating the effect of precipitates in IN718 under monotonic and cyclic deformation [J]. Int. J. Plast., 2021, 141: 102990
11 Sun C Y, Guo N, Fu M W, et al. Modeling of slip, twinning and transformation induced plastic deformation for TWIP steel based on crystal plasticity [J]. Int. J. Plast., 2016, 76: 186
12 Guo N, Tang B T, Liu J Y, et al. Characteristic stepwise strain hardening behaviour induced by slip and twinning of large-deformed copper single crystals: Crystal plasticity modelling and simulation [J]. Philos. Mag., 2021, 101: 1245
13 Li X X, Xu D S, Yang R. Crystal plasticity finite element method investigation of the high temperature deformation consistency in dual-phase titanium alloy [J]. Acta Metall. Sin., 2019, 55: 928
13 李学雄, 徐东生, 杨 锐. 双相钛合金高温变形协调性的CPFEM研究 [J]. 金属学报, 2019, 55: 928
14 Chin G Y, Hosford W F, Mendorf D R. Accommodation of constrained deformation in f.c.c. metals by slip and twinning [J]. Proc. Roy. Soc., 1969, 309A: 433
15 Van Houtte P. Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning [J]. Acta Metall., 1978, 26: 591
16 Choi S H, Shin E J, Seong B S. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression [J]. Acta Mater., 2007, 55: 4181
17 Tomé C N, Lebensohn R A, Kocks U F. A model for texture development dominated by deformation twinning: Application to zirconium alloys [J]. Acta Metall. Mater., 1991, 39: 2667
18 Kalidindi S R. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals [J]. Int. J. Plast., 2001, 17: 837
19 Sun C Y, Guo X R, Huang J, et al. Modelling of plastic deformation on coupling twinning of single crystal TWIP steel [J]. Acta Metall. Sin., 2015, 51: 357
19 孙朝阳, 郭祥如, 黄 杰等. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究 [J]. 金属学报, 2015, 51: 357
20 Sun C Y, Guo X R, Guo N, et al. Investigation of plastic deformation behavior on coupling twinning of polycrystal TWIP steel [J]. Acta Metall. Sin., 2015, 51: 1507
20 孙朝阳, 郭祥如, 郭 宁等. 耦合孪生的TWIP钢多晶体塑性变形行为研究 [J]. 金属学报, 2015, 52: 1507
21 Beyerlein I J, Mara N A, Bhattacharyya D, et al. Texture evolution via combined slip and deformation twinning in rolled silver-copper cast eutectic nanocomposite [J]. Int. J. Plast., 2011, 27: 121
22 Wu P D, Guo X Q, Qiao H, et al. A constitutive model of twin nucleation, propagation and growth in magnesium crystals [J]. Mater. Sci. Eng., 2015, A625: 140
23 Qiao H, Barnett M R, Wu P D. Modeling of twin formation, propagation and growth in a Mg single crystal based on crystal plasticity finite element method [J]. Int. J. Plast., 2016, 86: 70
24 Wang H, Clausen B, Capolungo L, et al. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling [J]. Int. J. Plast., 2016, 79: 275
25 Kalidindi S R. Incorporation of deformation twinning in crystal plasticity models [J]. J. Mech. Phys. Solids, 1998, 46: 267
26 Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, A387: 143
27 Arsenlis A, Parks D M. Modeling the evolution of crystallographic dislocation density in crystal plasticity [J]. J. Mech. Phys. Solids, 2002, 50: 1979
28 Sun Z K, Li F G, Zhu J M. Radial micro-cracks in pile-up region of single-crystal Cu in spherical indentation: Experimental observation and crystal plastic simulation [J]. J. Mater. Sci., 2019, 54: 9875
29 Khan A S, Liu J, Yoon J W, et al. Strain rate effect of high purity aluminum single crystals: Experiments and simulations [J]. Int. J. Plast., 2015, 67: 39
30 Dancette S, Delannay L, Renard K, et al. Crystal plasticity modeling of texture development and hardening in TWIP steels [J]. Acta Mater., 2012, 60: 2135
31 Blewitt T H, Coltman R R, Redman J K. Low-temperature deformation of copper single crystals [J]. J. Appl. Phys., 1957, 28: 651
32 Quey R, Dawson P R, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing [J]. Comput. Methods Appl. Mech. Eng., 2011, 200: 1729
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[4] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[7] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[9] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[10] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[11] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[12] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[13] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[14] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[15] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.