|
|
Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为 |
郑晓航1, 宁睿1, 段佳彤2, 蔡伟1( ) |
1 哈尔滨工业大学材料科学与工程学院 哈尔滨 150006 2 中国工程物理研究院科技信息中心 绵阳 621900 |
|
Martensitic Transformation and Damping Behavior of Ti70-xTa15Zr15Fex (x=0.3, 0.6, 1.0) Shape Memory Thin Films |
ZHENG Xiaohang1, NING Rui1, DUAN Jiatong2, CAI Wei1( ) |
1 Institue of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China 2 Center of Science and Technology, China Academy of Engineering Physics, Mianyang 621900, China |
引用本文:
郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
Xiaohang ZHENG,
Rui NING,
Jiatong DUAN,
Wei CAI.
Martensitic Transformation and Damping Behavior of Ti70-xTa15Zr15Fex (x=0.3, 0.6, 1.0) Shape Memory Thin Films[J]. Acta Metall Sin, 2020, 56(12): 1690-1696.
[1] |
Otsuka K, Wayman C M. Shape Memory Materials [M]. Cambridge: Cambridge University Press, 1999: 246
|
[2] |
Otsuka K, Ren X. Physical metallurgy of TiNi-based shape memory alloys [J]. Prog. Mater Sci., 2005, 50: 511
doi: 10.1016/j.pmatsci.2004.10.001
|
[3] |
Xu Z Y. Shape memory materials [J]. Trans. Nonferrous Met. Soc., 2001, 11: 1
|
[4] |
Miyazaki S, Fu Y Q, Huang W M. Thin Film Shape Memory Alloys: Fundamentals and Device Applications [M]. Cambridge: Cambridge University Press, 2009: 437
|
[5] |
Fu Y Q, Huang W M, Du H J, et al. Characterization of TiNi shape-memory alloy thin films for MEMS applications [J]. Surf. Coat. Technol., 2001, 145: 107
doi: 10.1016/S0257-8972(01)01324-X
|
[6] |
Wilson S A, Jourdain R P J, Zhang Q, et al. New materials for micro-scale sensors and actuators: An engineering review [J]. Mater. Sci. Eng., 2007, R56: 1
|
[7] |
Fu Y Q, Du H J, Huang W M, et al. TiNi-based thin films in MEMS applications: A review [J]. Sens. Actuators, 2004, 112A: 395
|
[8] |
Shin D D, Mohanchandra K P, Carman G P. Development of hydraulic linear actuator using thin film SMA [J]. Sens. Actuators, 2005, 119A: 151
|
[9] |
Fu Y Q, Luo J K, Flewitt A J, et al. Microactuators of free-standing TiNiCu films [J]. Smart Mater. Struct., 2007, 16: 2651
doi: 10.1088/0964-1726/16/6/070
|
[10] |
Winzek B, Schmitz S, Rumpf H, et al. Recent developments in shape memory thin film technology [J]. Mater. Sci. Eng., 2004, A378: 40
|
[11] |
Kim H Y, Mizutani M, Miyazaki S. Crystallization process and shape memory properties of Ti-Ni-Zr thin films [J]. Acta Mater., 2009, 57: 1920
doi: 10.1016/j.actamat.2008.12.036
|
[12] |
König D, Zarnetta R, Savan A, et al. Phase transformation, structural and functional fatigue properties of Ti-Ni-Hf shape memory thin films [J]. Acta Mater., 2011, 59: 3267
doi: 10.1016/j.actamat.2011.01.066
|
[13] |
Zheng X H, Sui J H, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy [J]. Scr. Mater., 2013, 68: 1008
doi: 10.1016/j.scriptamat.2013.03.008
|
[14] |
Zheng X H, Sui J H, Zhang X, et al. Effect of Y addition on the martensitic transformation and shape memory effect of Ti-Ta high-temperature shape memory alloy [J]. J. Alloys Compd., 2012, 539: 144
doi: 10.1016/j.jallcom.2012.06.021
|
[15] |
Wang C H, Liu M, Hu P F, et al. The effects of α″ and ω phases on the superelasticity and shape memory effect of binary Ti-Mo alloys [J]. J. Alloys Compd., 2017, 720: 488
doi: 10.1016/j.jallcom.2017.05.299
|
[16] |
Zheng X H, Sui J H, Yang Z Y, et al. Effect of thermo-mechanical process on structure and high temperature shape memory properties of Ti-15Ta-15Zr alloy [J]. Chin. Phys., 2017, 26B: 056103
|
[17] |
Bellouard Y. Shape memory alloys for microsystems: A review from a material research perspective [J]. Mater. Sci. Eng., 2008, A481-482: 582
|
[18] |
Zhang F, Cui Y, Xue P F, et al. Microstructures and memory properties of Ti69Zr30Fe1 high-temperature shape memory alloy [J]. Rare Met. Mater. Eng., 2013, 42: 2131
|
[18] |
(张 菲, 崔 琰, 薛鹏飞等. Ti69Zr30Fe1高温形状记忆合金的微观结构和记忆特性 [J]. 稀有金属材料与工程, 2013, 42: 2131)
|
[19] |
Motemani Y, Buenconsejo P J S, Craciunescu C, et al. High-temperature shape memory effect in Ti-Ta thin films sputter deposited at room temperature [J]. Adv. Mater. Inter., 2014, 1: 1400019
doi: 10.1002/admi.201400019
|
[20] |
Ning R, Zheng X H, Yao J, et al. The effect of annealing treatment on microstructure and shape memory behavior of Ti-Ta-Zr thin films [J]. Vacuum, 2018, 153: 1
doi: 10.1016/j.vacuum.2018.03.044
|
[21] |
Buensconejo P J S, Kim H Y, Miyazaki S. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys [J]. Acta Mater., 2009,57: 2509
doi: 10.1016/j.actamat.2009.02.007
|
[22] |
Hsu H C, Hsu S K, Wu S C, et al. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys [J]. Mater. Charact., 2010, 61: 851
doi: 10.1016/j.matchar.2010.05.003
|
[23] |
Zheng P Q, Kucza N J, Patrick C L, et al. Mechanical and magnetic behavior of oligocrystalline Ni-Mn-Ga microwires [J]. J. Alloys Compd., 2015, 624: 226
doi: 10.1016/j.jallcom.2014.11.067
|
[24] |
Meng X L, Cai W, Wang L M, et al. Microstructure of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy [J]. Scr. Mater., 2001, 45: 1177
doi: 10.1016/S1359-6462(01)01147-2
|
[25] |
Yin F, Iwasaki S, Ping D, et al. Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution [J]. Adv. Mater., 2006, 18: 1541
doi: 10.1002/(ISSN)1521-4095
|
[26] |
Wang Q, He Q X, Wang T, et al. Influence of solution-aging treatment on damping and tensile properties of Ti-36Nb-2Ta-3Zr-0.3O alloy [J]. Mater. Sci. Technol. 2019, 35: 37
doi: 10.1080/02670836.2018.1534717
|
[27] |
Segui C, Cesari E, Pons J, et al. Internal friction behaviour of Ni-Mn-Ga [J]. Mater. Sci. Eng., 2004, A370: 481
|
[28] |
Fan G, Zhou Y, Otsuka K, et al. Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50-xCux shape memory alloys [J]. Acta Mater., 2006, 54: 5221
doi: 10.1016/j.actamat.2006.06.018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|