Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1343-1354    DOI: 10.11900/0412.1961.2020.00012
  本期目录 | 过刊浏览 |
1.4%CuHSLA钢的组织和力学性能
杜瑜宾1,2, 胡小锋1, 张守清1,2, 宋元元1, 姜海昌1, 戎利建1()
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Microstructure and Mechanical Properties of HSLA Steel Containing 1.4%Cu
DU Yubin1,2, HU Xiaofeng1, ZHANG Shouqing1,2, SONG Yuanyuan1, JIANG Haichang1, RONG Lijian1()
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 含1.4%CuHSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.
Yubin DU, Xiaofeng HU, Shouqing ZHANG, Yuanyuan SONG, Haichang JIANG, Lijian RONG. Microstructure and Mechanical Properties of HSLA Steel Containing 1.4%Cu[J]. Acta Metall Sin, 2020, 56(10): 1343-1354.

全文: PDF(4726 KB)   HTML
摘要: 

以不含Cu (0Cu)和含1.4%Cu (1.4Cu)的HSLA钢为研究对象,利用OM、SEM、EBSD等技术手段研究了Cu对HSLA合金钢显微组织的影响,利用APT表征了纳米富Cu团簇的析出特征,并通过拉伸和冲击实验测定了合金钢的力学性能。结果表明,淬火态Cu固溶在基体中,经回火后则以富Cu团簇的形式在基体和界面处析出。Cu对回火态HSLA合金钢的原始奥氏体晶粒尺寸、显微组织及有效晶粒尺寸均无明显影响,但对其强度和冲击功影响较大。1.4Cu钢经过450 ℃回火处理后获得最佳强化效果,其屈服强度比0Cu钢提升了143 MPa,此时1.4Cu钢的室温冲击功仅为24 J,断口以河流花样为主,其断裂方式为准解理脆性断裂;而0Cu钢的室温冲击功高达127 J,其断裂方式为韧窝的韧性断裂。APT实验结果表明,2种回火态合金钢的板条界面处均存在C、Cr、Ni、Mn元素的富集。与0Cu钢相比,1.4Cu钢的板条界面处存在大量富Cu团簇,从而导致较大的应力集中,有利于裂纹的萌生,并且板条界面处析出的富Cu团簇会排斥Mo元素,抑制了Mo元素在板条界处的偏聚,相对降低了板条界面处的结合强度,有利于裂纹沿板条界扩展。此外,富Cu团簇在强化基体的同时,也会降低基体的韧性,加快裂纹在基体内的扩展。因而,1.4Cu钢在获得最佳强化效果时其冲击性能较差。

关键词 HSLA钢Cu板条界面元素偏聚冲击功    
Abstract

The Cu bearing high strength low alloy (HSLA) steels exhibit high-strength, high toughness and good weldability, which have been widely used in shipbuilding, offshore structures etc. Due to the extremely poor impact energy when attained peak strength, the Cu bearing HSLA steels are usually used at overaged state, which have a good combination of impact energy and strength. In order to clarify the effect of Cu on mechanical properties especially on the impact energy for HSLA steels at peak ageing state, two HSLA steels without Cu (0Cu) and with 1.4%Cu (1.4Cu), were prepared by vacuum induction melting in this study. The influence of Cu on the microstructure of HSLA steel was investigated by OM, SEM and EBSD. Meanwhile, the Cu-riched clusters were characterized by APT and the mechanical properties were measured by tensile test and impact test. The results show that the Cu is completely solid-solutioned into the matrix after quenching, and there are a great number of Cu-riched clusters precipitated in the matrix and boundaries after tempering. Cu element has no obvious effect on the prior austenite grain size, microstructure and effective grain size of tempered HSLA steel, but has significant influence on the strength and impact energy for tempered HSLA steel. After tempered at 450 ℃, the 1.4Cu steel attained the maximum yield strength (1053 MPa), higher than that of 0Cu steel. It is worth noting that the impact energy of 1.4Cu steel tempered at 450 ℃ is only 24 J at room temperature and the impact fracture is a quasi-cleavage brittle fracture mode dominated by river patterns. However, 0Cu steel exhibits a completely ductile fracture mode dominated by dimples at room temperature and the impact energy is 127 J. The APT results show that both 0Cu and 1.4Cu tempered steels have the segregation of C, Cr, Ni, Mn elements at the lath boundary. Compared with 0Cu steel, there precipitate a great number of Cu-riched clusters at the lath boundary for 1.4Cu steel, which will result in the stress concentration and then promote the crack initiation at the lath boundary. In addition, the Cu-rich clusters precipitated at the lath boundary could prevent the Mo segregated at the lath boundary, which will decrease the bonding energy and then promote the crack propagation along the lath boundary. Besides, the negative effect of strengthening due to the Cu-riched clusters at matrix will also accelerate the crack propagation in the matrix, which will decrease the impact energy of 1.4Cu steel. Therefore, the impact energy of 1.4Cu steel is much lower than that of 0Cu steel at room temperature.

Key wordsHSLA steel    Cu    lath boundary    element segregation    impact energy
收稿日期: 2020-01-10     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2016YFB0300601);国家重点研发计划项目(2017YFB1201302);辽宁省“兴辽英才计划”项目(XLYC1907143)
作者简介: 杜瑜宾,男,1993年生,博士生
SteelContentCNiMnMoCrSiSPNbCuFe
0CuMass fraciton / %0.0374.030.970.500.990.210.0050.0060.0400.010Bal.
Atomic fraction / %0.1703.890.990.291.070.420.0090.0110.0240.009Bal.
1.4CuMass fraciton / %0.0414.011.000.560.950.220.0050.0070.051.40Bal.
Atomic fraction / %0.1903.881.020.321.020.440.0090.0130.031.23Bal.
表1  2种HSLA钢的化学成分
图1  不同温度回火后0Cu与1.4Cu钢的屈服强度和延伸率
图2  450 ℃回火处理后0Cu和1.4Cu钢在不同温度下的冲击性能
图3  0Cu和1.4Cu钢经450 ℃回火处理后的原始奥氏体晶粒和显微组织的SEM像
图4  450 ℃回火处理后0Cu和1.4Cu钢的晶界图与取向差角度分布图
图5  1.4Cu钢450 ℃回火处理后富Cu团簇与C元素的空间分布、基体和界面处Cu的分布及富Cu团簇的成分分析
图6  0Cu与1.4Cu钢中C元素的空间分布和界面处合金元素的一维浓度分布
图7  1.4Cu钢450 ℃回火后界面处Mo、Cu元素的空间分布图及界面处富Cu团簇的一维浓度图
图8  0Cu和1.4Cu钢450 ℃回火处理后的室温拉伸断口形貌
图9  0Cu与1.4Cu钢450 ℃回火处理后的室温冲击断口形貌
图10  1.4Cu钢室温冲击断口横截面的SEM像、应变分布图和裂纹在板条界面处萌生扩展示意图
[1] Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides [J]. Metall. Mater. Trans., 2016, 47A: 3860
[2] Ghosh A, Mishra B, Das S, et al. Structure and properties of a low carbon Cu bearing high strength steel [J]. Mater. Sci. Eng., 2005, A396: 320
[3] Zhang Z W, Liu C T, Wen Y R, et al. Influence of aging and thermomechanical treatments on the mechanical properties of a nanocluster-strengthened ferritic steel [J]. Metall. Mater. Trans., 2011, 43A: 351
[4] Dhua S K, Mukerjee D, Sarma D S. Influence of thermomechanical treatments on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2003, 34A: 241
[5] Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel [J]. Mater. Sci. Eng., 2018, A729: 423
[6] Bhagat A N, Pabi S K, Ranganathan S, et al. Aging behaviour in copper bearing high strength low alloy steels [J]. J. Iron Steel Res. Int., 2004, 44: 115
[7] Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2001, 32A: 2259
[8] Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, A318: 197
[9] Ghosh A, Das S, Chatterjee S. Ageing behavior of a Cu-bearing ultrahigh strength steel [J]. Mater. Sci. Eng., 2008, A486: 152
[10] Lee T H, Kim Y O, Kim S J. Crystallographic model for BCC-to-9R martensitic transformation of Cu precipitates in ferritic steel [J]. Philos. Mag., 2007, 87: 209
doi: 10.1080/14786430600909014
[11] Othen P J, Jenkins M L, Smith G D W, et al. Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni [J]. Philos. Mag. Lett., 1991, 64: 383
doi: 10.1080/09500839108215121
[12] Kolli R P, Seidman D N. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel [J]. Acta Mater., 2008, 56: 2073
doi: 10.1016/j.actamat.2007.12.044
[13] Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
[13] (张正延, 柴 锋, 罗小兵等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55: 783)
doi: 10.11900/0412.1961.2018.00485
[14] Hunter A H. An atom probe tomographic investigation of high-strength, high-toughness precipitation strengthened steels for naval applications [D]. Evanston: Northwestern University, 2012
[15] Kapoor M, Isheim D, Vaynman S, et al. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels [J]. Acta Mater., 2016, 104: 166
doi: 10.1016/j.actamat.2015.11.041
[16] Zhao Y, Tong X, Wei X H, et al. Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel [J]. Int. J. Plast., 2019, 116: 203
doi: 10.1016/j.ijplas.2019.01.004
[17] Yan J C, Xu H W, Zuo X W, et al. Strategies for strengthening-ductility and hierarchical co-precipitation in multicomponent nano-precipitated steels by Cu partitioning [J]. Mater. Sci. Eng., 2019, A739: 225
[18] Liu Q D, Zhao S J. Cu precipitation on dislocation and interface in quench-aged steel [J]. MRS Commun., 2012, 2: 127
doi: 10.1557/mrc.2012.21
[19] Song Y Y, Zhao M J, Rong L J. Study on the precipitation of γ' in a Fe-Ni base alloy during ageing by APT [J]. Acta Metall. Sin., 2018, 54: 1236
doi: 10.11900/0412.1961.2017.00563
[19] (宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究 [J]. 金属学报, 2018, 54: 1236)
doi: 10.11900/0412.1961.2017.00563
[20] Kelly T F, Miller M K. Invited review article: Atom probe tomography [J]. Rev. Sci. Instrum., 2007, 78: 031101
doi: 10.1063/1.2709758 pmid: 17411171
[21] Yu X M, Zhao S J. Study on Cu precipitate of the low C high strength steel containing Cu and Ni during isochronal tempering [J]. Acta Metall. Sin., 2013, 49: 569
doi: 10.3724/SP.J.1037.2012.00666
[21] (余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时间回火析出富Cu相的研究 [J]. 金属学报, 2013, 49: 569)
doi: 10.3724/SP.J.1037.2012.00666
[22] Wen Y R, Hirata A, Zhang Z W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy [J]. Acta Mater., 2013, 61: 2133
doi: 10.1016/j.actamat.2012.12.034
[23] Zhang Z W. Research development of high strength low alloy (HSLA) steels [J]. Mater. China, 2016, 35(2): 141
[23] (张中武. 高强度低合金钢(HSLA)的研究进展 [J]. 中国材料进展, 2016, 35(2): 141)
[24] Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
[25] Li Y J, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography [J]. Scr. Mater., 2015, 96: 13
doi: 10.1016/j.scriptamat.2014.09.031
[26] Lim N S, Bang C W, Das S, et al. Influence of tempering temperature on both the microstructural evolution and elemental distribution in AISI 4340 steels [J]. Met. Mater. Int., 2012, 18: 87
doi: 10.1007/s12540-012-0011-4
[27] Cao J C, Yong Q L, Liu Q Y, et al. Solubility formulac of molybdenum in iron matrix [J]. China Molybdenum Ind., 2005, 29(5): 46
[27] (曹建春, 雍岐龙, 刘清友等. 钼在α铁基体中的平衡固溶度公式 [J]. 中国钼业, 2005, 29(5): 46)
[28] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
[29] Li Z T, Chai F, Yang L, et al. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel [J]. Mater. Des., 2020, 191: 108637
doi: 10.1016/j.matdes.2020.108637
[30] Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions [J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
[31] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032 pmid: 28397822
[32] Wang D, Gao N, Gao F, et al. Cu segregation at Σ5 symmetrical grain boundary in α-Fe: Atomic-level simulations [J]. Chin. Phys. Lett., 2014, 31: 096801
doi: 10.1088/0256-307X/31/9/096801
[33] Yuasa M, Mabuchi M. Effects of segregated Cu on an Fe grain boundary by first-principles tensile tests [J]. J. Phys. Condens. Matter., 2010, 22: 505705
pmid: 21406808
[34] Thompson S W. Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation-strengthened, high-strength low-alloy plate steels [J]. Mater. Sci. Eng., 2018, A711: 424
[35] Lejécek P. Grain Boundary Segregation in Metals [M]. New York: Springer, 2010: 177
[36] Naylor J P, Blondeau R. The respective roles of the packet size and the lath width on toughness [J]. Metall. Mater. Trans., 1976, 7A: 891
[37] Yong Q L. Second Phases in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 22
[37] (雍岐龙. 钢铁结构材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 22)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[11] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[12] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[13] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[14] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[15] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.