|
|
含1.4%Cu的HSLA钢的组织和力学性能 |
杜瑜宾1,2, 胡小锋1, 张守清1,2, 宋元元1, 姜海昌1, 戎利建1( ) |
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Microstructure and Mechanical Properties of HSLA Steel Containing 1.4%Cu |
DU Yubin1,2, HU Xiaofeng1, ZHANG Shouqing1,2, SONG Yuanyuan1, JIANG Haichang1, RONG Lijian1( ) |
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 含1.4%Cu的HSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.
Yubin DU,
Xiaofeng HU,
Shouqing ZHANG,
Yuanyuan SONG,
Haichang JIANG,
Lijian RONG.
Microstructure and Mechanical Properties of HSLA Steel Containing 1.4%Cu[J]. Acta Metall Sin, 2020, 56(10): 1343-1354.
[1] |
Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides [J]. Metall. Mater. Trans., 2016, 47A: 3860
|
[2] |
Ghosh A, Mishra B, Das S, et al. Structure and properties of a low carbon Cu bearing high strength steel [J]. Mater. Sci. Eng., 2005, A396: 320
|
[3] |
Zhang Z W, Liu C T, Wen Y R, et al. Influence of aging and thermomechanical treatments on the mechanical properties of a nanocluster-strengthened ferritic steel [J]. Metall. Mater. Trans., 2011, 43A: 351
|
[4] |
Dhua S K, Mukerjee D, Sarma D S. Influence of thermomechanical treatments on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2003, 34A: 241
|
[5] |
Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel [J]. Mater. Sci. Eng., 2018, A729: 423
|
[6] |
Bhagat A N, Pabi S K, Ranganathan S, et al. Aging behaviour in copper bearing high strength low alloy steels [J]. J. Iron Steel Res. Int., 2004, 44: 115
|
[7] |
Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2001, 32A: 2259
|
[8] |
Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, A318: 197
|
[9] |
Ghosh A, Das S, Chatterjee S. Ageing behavior of a Cu-bearing ultrahigh strength steel [J]. Mater. Sci. Eng., 2008, A486: 152
|
[10] |
Lee T H, Kim Y O, Kim S J. Crystallographic model for BCC-to-9R martensitic transformation of Cu precipitates in ferritic steel [J]. Philos. Mag., 2007, 87: 209
doi: 10.1080/14786430600909014
|
[11] |
Othen P J, Jenkins M L, Smith G D W, et al. Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni [J]. Philos. Mag. Lett., 1991, 64: 383
doi: 10.1080/09500839108215121
|
[12] |
Kolli R P, Seidman D N. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel [J]. Acta Mater., 2008, 56: 2073
doi: 10.1016/j.actamat.2007.12.044
|
[13] |
Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
|
[13] |
(张正延, 柴 锋, 罗小兵等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55: 783)
doi: 10.11900/0412.1961.2018.00485
|
[14] |
Hunter A H. An atom probe tomographic investigation of high-strength, high-toughness precipitation strengthened steels for naval applications [D]. Evanston: Northwestern University, 2012
|
[15] |
Kapoor M, Isheim D, Vaynman S, et al. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels [J]. Acta Mater., 2016, 104: 166
doi: 10.1016/j.actamat.2015.11.041
|
[16] |
Zhao Y, Tong X, Wei X H, et al. Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel [J]. Int. J. Plast., 2019, 116: 203
doi: 10.1016/j.ijplas.2019.01.004
|
[17] |
Yan J C, Xu H W, Zuo X W, et al. Strategies for strengthening-ductility and hierarchical co-precipitation in multicomponent nano-precipitated steels by Cu partitioning [J]. Mater. Sci. Eng., 2019, A739: 225
|
[18] |
Liu Q D, Zhao S J. Cu precipitation on dislocation and interface in quench-aged steel [J]. MRS Commun., 2012, 2: 127
doi: 10.1557/mrc.2012.21
|
[19] |
Song Y Y, Zhao M J, Rong L J. Study on the precipitation of γ' in a Fe-Ni base alloy during ageing by APT [J]. Acta Metall. Sin., 2018, 54: 1236
doi: 10.11900/0412.1961.2017.00563
|
[19] |
(宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究 [J]. 金属学报, 2018, 54: 1236)
doi: 10.11900/0412.1961.2017.00563
|
[20] |
Kelly T F, Miller M K. Invited review article: Atom probe tomography [J]. Rev. Sci. Instrum., 2007, 78: 031101
doi: 10.1063/1.2709758
pmid: 17411171
|
[21] |
Yu X M, Zhao S J. Study on Cu precipitate of the low C high strength steel containing Cu and Ni during isochronal tempering [J]. Acta Metall. Sin., 2013, 49: 569
doi: 10.3724/SP.J.1037.2012.00666
|
[21] |
(余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时间回火析出富Cu相的研究 [J]. 金属学报, 2013, 49: 569)
doi: 10.3724/SP.J.1037.2012.00666
|
[22] |
Wen Y R, Hirata A, Zhang Z W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy [J]. Acta Mater., 2013, 61: 2133
doi: 10.1016/j.actamat.2012.12.034
|
[23] |
Zhang Z W. Research development of high strength low alloy (HSLA) steels [J]. Mater. China, 2016, 35(2): 141
|
[23] |
(张中武. 高强度低合金钢(HSLA)的研究进展 [J]. 中国材料进展, 2016, 35(2): 141)
|
[24] |
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
|
[25] |
Li Y J, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography [J]. Scr. Mater., 2015, 96: 13
doi: 10.1016/j.scriptamat.2014.09.031
|
[26] |
Lim N S, Bang C W, Das S, et al. Influence of tempering temperature on both the microstructural evolution and elemental distribution in AISI 4340 steels [J]. Met. Mater. Int., 2012, 18: 87
doi: 10.1007/s12540-012-0011-4
|
[27] |
Cao J C, Yong Q L, Liu Q Y, et al. Solubility formulac of molybdenum in iron matrix [J]. China Molybdenum Ind., 2005, 29(5): 46
|
[27] |
(曹建春, 雍岐龙, 刘清友等. 钼在α铁基体中的平衡固溶度公式 [J]. 中国钼业, 2005, 29(5): 46)
|
[28] |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
|
[29] |
Li Z T, Chai F, Yang L, et al. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel [J]. Mater. Des., 2020, 191: 108637
doi: 10.1016/j.matdes.2020.108637
|
[30] |
Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions [J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
|
[31] |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
pmid: 28397822
|
[32] |
Wang D, Gao N, Gao F, et al. Cu segregation at Σ5 symmetrical grain boundary in α-Fe: Atomic-level simulations [J]. Chin. Phys. Lett., 2014, 31: 096801
doi: 10.1088/0256-307X/31/9/096801
|
[33] |
Yuasa M, Mabuchi M. Effects of segregated Cu on an Fe grain boundary by first-principles tensile tests [J]. J. Phys. Condens. Matter., 2010, 22: 505705
pmid: 21406808
|
[34] |
Thompson S W. Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation-strengthened, high-strength low-alloy plate steels [J]. Mater. Sci. Eng., 2018, A711: 424
|
[35] |
Lejécek P. Grain Boundary Segregation in Metals [M]. New York: Springer, 2010: 177
|
[36] |
Naylor J P, Blondeau R. The respective roles of the packet size and the lath width on toughness [J]. Metall. Mater. Trans., 1976, 7A: 891
|
[37] |
Yong Q L. Second Phases in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 22
|
[37] |
(雍岐龙. 钢铁结构材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 22)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|