|
|
290℃氩离子辐照对Fe-Cu合金微观组织的影响 |
朱小绘1, 刘向兵2, 王润中1, 李远飞2, 刘文庆1( ) |
1.上海大学 材料科学与工程学院 上海 200444 2.苏州热工研究院有限公司 苏州 215004 |
|
Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC |
ZHU Xiaohui1, LIU Xiangbing2, WANG Runzhong1, LI Yuanfei2, LIU Wenqing1( ) |
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2.Suzhou Nuclear Power Research Institute, Suzhou 215004, China |
引用本文:
朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
Xiaohui ZHU,
Xiangbing LIU,
Runzhong WANG,
Yuanfei LI,
Wenqing LIU.
Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. Acta Metall Sin, 2022, 58(7): 905-910.
1 |
Odette G R, Yamamoto T, Williams T J, et al. On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models [J]. J. Nucl. Mater., 2019, 526: 151863
doi: 10.1016/j.jnucmat.2019.151863
|
2 |
Zelenty J E. Understanding thermally induced embrittlement in low copper RPV steels utilising atom probe tomography [J]. Mater. Sci. Technol., 2015, 31: 981
doi: 10.1179/1743284714Y.0000000718
|
3 |
Zinkle S J, Terrani K A, Snead L L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 401
doi: 10.1016/j.cossms.2016.10.004
|
4 |
Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations [J]. Scr. Mater., 2018, 143: 154
doi: 10.1016/j.scriptamat.2017.06.041
|
5 |
Ding Z N, Yang Y T, Song Y, et al. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion [J]. Acta Phys. Sin., 2017, 66: 112501
doi: 10.7498/aps.66.112501
|
5 |
丁兆楠, 杨义涛, 宋 银 等. 高能重离子辐照的低活化钢硬化效应 [J]. 物理学报, 2017, 66: 112501
|
6 |
Liu X B, Wang R S, Ren A, et al. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation [J]. J. Nucl. Mater., 2014, 444: 1
doi: 10.1016/j.jnucmat.2013.09.026
|
7 |
He L, Tan L Z, Yang Y, et al. Evolution of B2 and Laves phases in a ferritic steel under Fe2+ ion irradiation at 475oC [J]. J. Nucl. Mater., 2019, 525: 102
doi: 10.1016/j.jnucmat.2019.07.024
|
8 |
Yang T F, Guo W, Poplawsky J D, et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation [J]. Acta Mater., 2020, 188: 1
doi: 10.1016/j.actamat.2020.01.060
|
9 |
Zhu X H, Liu X B, Wang R Z, et al. Hardening effects of He irradiation on Fe-Cu alloy [J]. Nuclear Inst. Methods Phys. Res. Sect., 2020, 479B: 211
|
10 |
Shu S, Almirall N, Wells P B, et al. Precipitation in Fe-Cu and Fe-Cu-Mn model alloys under irradiation: Dose rate effects [J]. Acta Mater., 2018, 157: 72
doi: 10.1016/j.actamat.2018.07.017
|
11 |
Jiao Z, Was G S. Precipitate evolution in ion-irradiated HCM12A [J]. J. Nucl. Mater., 2012, 425: 105
doi: 10.1016/j.jnucmat.2011.12.017
|
12 |
Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure [J]. Nucl. Inst. Methods Phys. Res. Sect., 2013, 310B: 75
|
13 |
Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption [J]. J. Nucl. Mater., 2013, 435: 77
doi: 10.1016/j.jnucmat.2012.12.025
|
14 |
Deng P, Peng Q J, Han E H, et al. Study of irradiation damage in domestically fabricated nuclear grade stainless steel [J]. Acta Metall. Sin., 2017, 53: 1588
|
14 |
邓 平, 彭群家, 韩恩厚 等. 国产核用不锈钢辐照损伤研究 [J]. 金属学报, 2017, 53: 1588
|
15 |
Miller M K, Russell K F, Thompson G B. Strategies for fabricating atom probe specimens with a dual beam FIB [J]. Ultramicroscopy, 2005, 102: 287
pmid: 15694675
|
16 |
Luo F F, Guo L P, Chen J H, et al. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures [J]. J. Nucl. Mater., 2014, 455: 339
doi: 10.1016/j.jnucmat.2014.07.013
|
17 |
Yeli G, Chen D, Yabuuchi K, et al. The stability of γ' precipitates in a multi-component FeCoNiCrTi0.2 alloy under elevated-temperature irradiation [J]. J. Nucl. Mater., 2020, 540: 152364
doi: 10.1016/j.jnucmat.2020.152364
|
18 |
Cairney J M, Rajan K, Haley D, et al. Mining information from atom probe data [J]. Ultramicroscopy, 2015, 159: 324
doi: 10.1016/j.ultramic.2015.05.006
|
19 |
Marquis E, Wirth B, Was G. Characterization and modeling of grain boundary chemistry evolution in ferritic steels under irradiation [R]. Ann Arbor, MI, USA: USDOE Office of Nuclear Energy (NE), 2016
|
20 |
Horton L L, Bentley J, Jesser W A. The microstructure of “triple-beam” ion irradiated Fe and Fe-Cr alloys [J]. J. Nucl. Mater., 1981, 104: 1085
doi: 10.1016/0022-3115(82)90745-0
|
21 |
Ke J H, Reese E R, Marquis E A, et al. Flux effects in precipitation under irradiation-simulation of Fe-Cr alloys [J]. Acta Mater., 2019, 164: 586
doi: 10.1016/j.actamat.2018.10.063
|
22 |
Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. 2nd Ed., Berlin: Springer-Verlag, 2017: 488
|
23 |
Xu D H, Certain A, Voigt H J L, et al. Ballistic effects on the copper precipitation and re-dissolution kinetics in an ion irradiated and thermally annealed Fe-Cu alloy [J]. J. Chem. Phys., 2016, 145: 104704
doi: 10.1063/1.4962345
|
24 |
Hu Z Y, Xu C, Liang Y X, et al. The radiation effect of ion species on the microstructure of nanoporous gold [J]. Scr. Mater., 2021, 190: 136.
doi: 10.1016/j.scriptamat.2020.08.042
|
25 |
Belkacemi L T, Meslin E, Décamps B, et al. Role of displacement cascades in Ni clustering in a ferritic Fe-3.3 at%Ni model alloy: Comparison of heavy and light particle irradiations [J]. Scr. Mater., 2020, 188: 169
doi: 10.1016/j.scriptamat.2020.07.031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|