Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 905-910    DOI: 10.11900/0412.1961.2021.00328
  研究论文 本期目录 | 过刊浏览 |
290℃氩离子辐照对Fe-Cu合金微观组织的影响
朱小绘1, 刘向兵2, 王润中1, 李远飞2, 刘文庆1()
1.上海大学 材料科学与工程学院 上海 200444
2.苏州热工研究院有限公司 苏州 215004
Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC
ZHU Xiaohui1, LIU Xiangbing2, WANG Runzhong1, LI Yuanfei2, LIU Wenqing1()
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Suzhou Nuclear Power Research Institute, Suzhou 215004, China
引用本文:

朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
Xiaohui ZHU, Xiangbing LIU, Runzhong WANG, Yuanfei LI, Wenqing LIU. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. Acta Metall Sin, 2022, 58(7): 905-910.

全文: PDF(2242 KB)   HTML
摘要: 

在290℃对固溶态Fe-1.3%Cu (原子分数)合金进行4 × 1016 ion/cm2注量氩离子辐照,用TEM观察样品微观组织,用原子探针表征溶质原子分布。结果表明,辐照层内形成大量黑斑缺陷,距辐照表面500~600 nm深度处存在直径1.3 nm的气泡。辐照层内存在富Cu团簇,随深度增加团簇尺寸和数量密度先增加后降低。这是由于高损伤剂量率与大尺寸级联碰撞共同作用抑制Cu原子偏聚,使近表面处富Cu团簇尺寸小、数量少,损伤剂量峰附近氩离子浓度增加,形成Ar-V团簇,长大过程中拖拽Cu原子进行迁移,促进富Cu团簇形成和长大。

关键词 Ar+辐照Fe-Cu合金损伤剂量率富Cu团簇    
Abstract

Irradiation-enhanced precipitation of Cu clusters is a main factor contributing to the hardening/embrittlement of reactor pressure vessels, and thus, limiting the lifetime of reactors. The Cu clusters are easily formed in ferric alloys under neutron irradiation or ion irradiation, which is used to simulate neutron irradiation. However, the inhibition and even dissolution of Cu clusters in Cu-containing alloys after ion irradiation is also observed in some research. To investigate the reason for ion irradiation-induced dissolution of solute clusters, Fe-1.3%Cu (atomic fraction) alloys were irradiated with Ar ions to the fluence of 4 × 1016 ion/cm2 at 290oC. TEM and atom probe tomography were used to characterize microstructure and solute atom distributions, respectively. Numerous black dot defects and bubbles with average diameters of about 1.3 nm are observed in the irradiated layer. Well-defined Cu-rich clusters are also precipitated in the irradiated layer. The average radius and number density of clusters increase first and then decrease with an increase in distance from the surface. The high displacement damage rate and large cascade size of Ar ions inhibit the irradiation-enhanced diffusion of Cu atoms and bring Cu atoms of the clusters back to matrix, which causes Cu clusters to precipitate weakly near the irradiated surface. With increasing distance from the surface, the Ar ion concentration increases. Ar-vacancy complexes or Ar bubbles form due to the aggregation of Ar ions. Then, the interattraction between Cu atoms and vacancies complexes would enhance the atom diffusion and segregation, which causes an increase in size and number density of the Cu-rich clusters.

Key wordsAr ion irradiation    Fe-Cu alloy    displacement damage rate    Cu-rich cluster
收稿日期: 2021-08-12     
ZTFLH:  TG142.7  
基金资助:国家重点研发计划项目(2017YFB0703002);国家自然科学基金联合基金项目(U1530115)
作者简介: 朱小绘,男,1994年生,博士生
图1  氩离子辐照后Fe-Cu合金深度方向损伤剂量和离子浓度分布(SRIM 2008软件)
图2  氩离子辐照后Fe-Cu合金微观组织的TEM像
图3  氩离子辐照后Fe-Cu合金距辐照表面不同深度处的Cu原子分布
图4  氩离子辐照后Fe-Cu合金距辐照表面不同深度的Cu原子第5近邻分布曲线
Depth / nmRp / nmNv / (1024 m-3)CCu / %
200-3000.761.110.84
500-6001.073.480.52
800-9000.851.901.02
表1  距表面不同深度处富Cu团簇等效半径、数量密度及基体中的Cu含量
1 Odette G R, Yamamoto T, Williams T J, et al. On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models [J]. J. Nucl. Mater., 2019, 526: 151863
doi: 10.1016/j.jnucmat.2019.151863
2 Zelenty J E. Understanding thermally induced embrittlement in low copper RPV steels utilising atom probe tomography [J]. Mater. Sci. Technol., 2015, 31: 981
doi: 10.1179/1743284714Y.0000000718
3 Zinkle S J, Terrani K A, Snead L L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 401
doi: 10.1016/j.cossms.2016.10.004
4 Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations [J]. Scr. Mater., 2018, 143: 154
doi: 10.1016/j.scriptamat.2017.06.041
5 Ding Z N, Yang Y T, Song Y, et al. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion [J]. Acta Phys. Sin., 2017, 66: 112501
doi: 10.7498/aps.66.112501
5 丁兆楠, 杨义涛, 宋 银 等. 高能重离子辐照的低活化钢硬化效应 [J]. 物理学报, 2017, 66: 112501
6 Liu X B, Wang R S, Ren A, et al. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation [J]. J. Nucl. Mater., 2014, 444: 1
doi: 10.1016/j.jnucmat.2013.09.026
7 He L, Tan L Z, Yang Y, et al. Evolution of B2 and Laves phases in a ferritic steel under Fe2+ ion irradiation at 475oC [J]. J. Nucl. Mater., 2019, 525: 102
doi: 10.1016/j.jnucmat.2019.07.024
8 Yang T F, Guo W, Poplawsky J D, et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation [J]. Acta Mater., 2020, 188: 1
doi: 10.1016/j.actamat.2020.01.060
9 Zhu X H, Liu X B, Wang R Z, et al. Hardening effects of He irradiation on Fe-Cu alloy [J]. Nuclear Inst. Methods Phys. Res. Sect., 2020, 479B: 211
10 Shu S, Almirall N, Wells P B, et al. Precipitation in Fe-Cu and Fe-Cu-Mn model alloys under irradiation: Dose rate effects [J]. Acta Mater., 2018, 157: 72
doi: 10.1016/j.actamat.2018.07.017
11 Jiao Z, Was G S. Precipitate evolution in ion-irradiated HCM12A [J]. J. Nucl. Mater., 2012, 425: 105
doi: 10.1016/j.jnucmat.2011.12.017
12 Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure [J]. Nucl. Inst. Methods Phys. Res. Sect., 2013, 310B: 75
13 Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption [J]. J. Nucl. Mater., 2013, 435: 77
doi: 10.1016/j.jnucmat.2012.12.025
14 Deng P, Peng Q J, Han E H, et al. Study of irradiation damage in domestically fabricated nuclear grade stainless steel [J]. Acta Metall. Sin., 2017, 53: 1588
14 邓 平, 彭群家, 韩恩厚 等. 国产核用不锈钢辐照损伤研究 [J]. 金属学报, 2017, 53: 1588
15 Miller M K, Russell K F, Thompson G B. Strategies for fabricating atom probe specimens with a dual beam FIB [J]. Ultramicroscopy, 2005, 102: 287
pmid: 15694675
16 Luo F F, Guo L P, Chen J H, et al. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures [J]. J. Nucl. Mater., 2014, 455: 339
doi: 10.1016/j.jnucmat.2014.07.013
17 Yeli G, Chen D, Yabuuchi K, et al. The stability of γ' precipitates in a multi-component FeCoNiCrTi0.2 alloy under elevated-temperature irradiation [J]. J. Nucl. Mater., 2020, 540: 152364
doi: 10.1016/j.jnucmat.2020.152364
18 Cairney J M, Rajan K, Haley D, et al. Mining information from atom probe data [J]. Ultramicroscopy, 2015, 159: 324
doi: 10.1016/j.ultramic.2015.05.006
19 Marquis E, Wirth B, Was G. Characterization and modeling of grain boundary chemistry evolution in ferritic steels under irradiation [R]. Ann Arbor, MI, USA: USDOE Office of Nuclear Energy (NE), 2016
20 Horton L L, Bentley J, Jesser W A. The microstructure of “triple-beam” ion irradiated Fe and Fe-Cr alloys [J]. J. Nucl. Mater., 1981, 104: 1085
doi: 10.1016/0022-3115(82)90745-0
21 Ke J H, Reese E R, Marquis E A, et al. Flux effects in precipitation under irradiation-simulation of Fe-Cr alloys [J]. Acta Mater., 2019, 164: 586
doi: 10.1016/j.actamat.2018.10.063
22 Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. 2nd Ed., Berlin: Springer-Verlag, 2017: 488
23 Xu D H, Certain A, Voigt H J L, et al. Ballistic effects on the copper precipitation and re-dissolution kinetics in an ion irradiated and thermally annealed Fe-Cu alloy [J]. J. Chem. Phys., 2016, 145: 104704
doi: 10.1063/1.4962345
24 Hu Z Y, Xu C, Liang Y X, et al. The radiation effect of ion species on the microstructure of nanoporous gold [J]. Scr. Mater., 2021, 190: 136.
doi: 10.1016/j.scriptamat.2020.08.042
25 Belkacemi L T, Meslin E, Décamps B, et al. Role of displacement cascades in Ni clustering in a ferritic Fe-3.3 at%Ni model alloy: Comparison of heavy and light particle irradiations [J]. Scr. Mater., 2020, 188: 169
doi: 10.1016/j.scriptamat.2020.07.031
[1] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[2] 徐刚,蔡琳玲,冯柳,周邦新,王均安,张海生. 富Cu团簇的析出对RPV模拟钢韧-脆转变温度的影响[J]. 金属学报, 2012, 48(6): 753-758.
[3] 徐刚,蔡琳玲,冯柳,周邦新,刘文庆,王均安. 利用APT对RPV模拟钢中富Cu原子团簇析出的研究[J]. 金属学报, 2012, 48(4): 407-413.
[4] 贺新福 杨鹏 杨文. Fe-Cu合金基体损伤的分子动力学模拟研究[J]. 金属学报, 2011, 47(7): 954-957.
[5] 许裕生;江焕宏;钱敏;金宗明;王耀荣;仇国阳;马荣兵;薛青. 少量硼对Fe-Cu纳米粉粒固溶度的影响[J]. 金属学报, 1997, 33(8): 807-813.