Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1355-1365    DOI: 10.11900/0412.1961.2020.00010
  本期目录 | 过刊浏览 |
碳钢在红沿河海洋工业大气环境中的初期腐蚀行为
宋学鑫1,2, 黄松鹏1,2, 汪川1, 王振尧1()
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe
SONG Xuexin1,2, HUANG Songpeng1,2, WANG Chuan1, WANG Zhenyao1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
Xuexin SONG, Songpeng HUANG, Chuan WANG, Zhenyao WANG. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. Acta Metall Sin, 2020, 56(10): 1355-1365.

全文: PDF(4591 KB)   HTML
摘要: 

利用腐蚀失重、SEM、XRD、红外光谱、电化学方法对碳钢在红沿河海洋工业大气环境中的初期腐蚀行为进行研究。结果表明,碳钢在该环境中的初期腐蚀动力学符合线性规律,腐蚀速率呈现波动变化。腐蚀产物的成分在早期阶段主要为γ-FeOOH和α-FeOOH,随后出现了一定含量的Fe3O4γ-FeOOH的含量随着时间呈现减小趋势,而α-FeOOH的变化相反。碳钢腐蚀10 d后的表面主要为点蚀和不规则局部腐蚀形貌,点蚀区的形貌因具体微环境的差异而不同。腐蚀60 d后的材料表面基本覆盖了腐蚀产物,但是锈层厚度不均匀,而且表面有很多巢结构,这种结构不仅容易聚集污染物而且有利于传质过程的进行,减弱了锈层的保护作用。结合电化学测试结果,进一步讨论了腐蚀产物层的保护作用。

关键词 碳钢大气腐蚀形态学腐蚀产物电化学    
Abstract

The atmospheric corrosion of carbon steel is an extensive topic that has been studied by many authors who have proposed many mechanisms and techniques for studying the phenomena involved and have reported long term exposure data in many different regions throughout the world. However, there are few literatures that have discussed the corrosion results of carbon steel exposed for short-term time which can contribute to the understanding of the initial corrosion mechanisms. Therefore in this work, mass-loss measurement, SEM, XRD, infrared spectroscopy and electrochemical techniques have been used to investigate the initial corrosion evaluation of carbon steel exposed to a coastal-industrial atmospheric environment in Hongyanhe. Mass-loss results show that the short-term corrosion kinetic of carbon steel is in good fitting with linear function, and the average corrosion rate fluctuates over time and don't show the downward trend observed in long-term exposure experiments. Lepidocrocite, goethite and magnetite are identified in corrosion products formed on the surface of exposed carbon steel samples. The content of lepidocrocite shows a decreasing trend over exposure time, while goethite is the opposite. Magnetite appears in the later stages and keeps stable in amount. Pitting and an irregular localized corrosion can be observed clearly on the surface of carbon steel specimens exposed for 10 d. The corrosion product at pitting regions is circular flowery shape which varies in details as the physical and chemical environments change. The rust layer grows over time and eventually covers the entire surface of carbon steel samples exposed for more than 60 d, yet its thickness is uneven. The surface of rust layer has many nest-shaped structures that can't barricade the physical transmission effectively. The protective effect of rust layer has been further discussed in combination with electrochemical results.

Key wordscarbon steel    atmospheric corrosion    morphology    corrosion product    electrochemistry
收稿日期: 2020-01-07     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目(51671197)
作者简介: 宋学鑫,男,1994年生,硕士生
图1  碳钢的腐蚀厚度损失及腐蚀速率随时间的变化
图2  红沿河海洋工业大气环境的温度和湿度
图3  碳钢腐蚀后的宏观形貌
图4  碳钢腐蚀后的微观形貌
图5  碳钢腐蚀10 d后的表面微观形貌及EDS分析
图6  碳钢腐蚀60 d后的表面微观形貌及EDS分析
图7  碳钢腐蚀不同时间后的截面形貌
图8  碳钢表面腐蚀产物的XRD谱
图9  碳钢表面腐蚀产物的相对含量与时间的关系
图10  碳钢表面腐蚀产物的红外透射光谱
图11  碳钢腐蚀试样的动电位极化曲线
图12  碳钢腐蚀试样的EIS
图13  EIS的拟合等效电路图
图14  等效电路中各元件的电容和电阻随时间的变化
[1] Feliu S, Morcillo M. Atmospheric Corrosion [M]. New York: John Wiley and Sons, 1982: 913
[2] Almeida E, Morcillo M, Rosales B, et al. Atmospheric corrosion of mild steel. Part I—Rural and urban atmospheres [J]. Mater. Corros., 2000, 51: 859
doi: 10.1002/(ISSN)1521-4176
[3] Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part II—Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
doi: 10.1002/(ISSN)1521-4176
[4] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
doi: 10.1016/j.corsci.2006.02.006
[5] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
[6] Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
[6] (王 力, 郭春云, 肖 葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431)
doi: 10.11902/1005.4537.2017.153
[7] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
doi: 10.1016/S0010-938X(99)00005-0
[8] Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
[8] (梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1)
[9] Lan T T N, Thoa N T P, Nishimura R, et al. Atmospheric corrosion of carbon steel under field exposure in the southern part of Vietnam [J]. Corros. Sci., 2006, 48: 179
doi: 10.1016/j.corsci.2004.11.018
[10] Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
[11] Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
doi: 10.1016/S0010-938X(03)00070-2
[12] Wang Z Y, Yu Q C, Wang C, et al. Corrosion behaviors of steels in marine atmospheric environment with SO2 pollution [J]. Chin. Sci. Bull., 2012, 57: 2991
doi: 10.1360/972011-1614
[12] (王振尧, 于全成, 汪 川等. 在含硫污染的海洋大气环境中核电用钢的腐蚀行为 [J]. 科学通报, 2012, 57: 2991)
doi: 10.1360/972011-1614
[13] Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
doi: 10.1016/0010-938X(91)90123-7
[14] Han W, Yu G C, Wang Z Y, et al. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J]. Corros. Sci., 2007, 49: 2920
doi: 10.1016/j.corsci.2007.01.009
[15] Cao G W, Liu Y W, Zhang D D, et al. Corrosion behavior of Q235 and Q345 carbon steel in Hongyanhe atmosphere [J]. Corros. Prot., 2018, 39: 24
[15] (曹公望, 刘雨薇, 张丹丹等. Q235和Q345钢在红沿河大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 24)
[16] Raman A, Kuban B, Razvan A. The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products [J]. Corros. Sci., 1991, 32: 1295
doi: 10.1016/0010-938X(91)90049-U
[17] Qu Q, Yan C W, Zhang L, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
[17] (屈 庆, 严川伟, 张 蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062)
[18] Sagoe-Crentsil K K, Glasser F P. Constitution of green rust and its significance to the corrosion of steel in portland cement [J]. Corrosion, 1993, 49: 457
doi: 10.5006/1.3316072
[19] Antunes R A, Costa I, de Faria D L A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure [J]. Mater. Res., 2003, 6: 403
doi: 10.1590/S1516-14392003000300015
[20] Weissenrieder J, Kleber C, Schreiner M, et al. In situ studies of sulfate nest formation on iron [J]. J. Electrochem. Soc., 2004, 151: B497
[21] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
[22] Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
[22] (郭明晓, 潘 晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65)
doi: 10.11900/0412.1961.2017.00142
[23] Arroyave C, Morcillo M. Atmospheric corrosion products in iron and steels [J]. Trends Corros. Res., 1997, 2: 1
[24] Rösler K, Baum H, Kukurs O, et al. Character and behavior of a layer of corrosion products on low-alloy steels in natural conditions [J]. Prot. Met., 1981, 17: 514
[25] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
[26] Yang X M. Study on the infrared spectra and raman spectra of steel rusty layer with atmospheric corrosion [J]. Spectrosc. Spec. Anal., 2006, 26: 2247
[26] (杨晓梅. 钢大气腐蚀锈层的红外、拉曼光谱研究 [J]. 光谱学与光谱分析, 2006, 26: 2247)
[27] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
doi: 10.5006/1.3280597
[28] Hu H L, Li N. Electrochemical Measurment [M]. Beijing: National Defence Industry Press, 2011: 115
[28] (胡会利, 李 宁. 电化学测量 [M]. 北京: 国防工业出版社, 2011: 115)
[29] Kihira H, Ito S, Murata T. Quantitative classification of patina conditions for weathering steel using a recently developed instrument [J]. Corrosion, 1989, 45: 347
doi: 10.5006/1.3577867
[30] Matsushima I, Ueno T. On the protective nature of atmosph rust on low-alloy steel [J]. Corros. Sci., 1971, 11: 129
doi: 10.1016/S0010-938X(71)80089-6
[31] Suzuki I, Masuko N, Hisamatsu Y. Electrochemical properties of iron rust [J]. Corros. Sci., 1979, 19: 521
doi: 10.1016/S0010-938X(79)80135-3
[32] Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng. Sci. Technol., 2019, 54: 241
doi: 10.1080/1478422X.2019.1574955
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[5] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[6] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[7] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[8] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[9] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[10] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[11] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[12] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[13] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[14] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[15] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.