| 
					引用本文:
						|  |  
    					|  |  
    					| Re和Ta对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响 |  
						| 黄太文1,卢晶1,许瑶1,王栋2,张健2,张家晨1,张军1,刘林1(  ) |  
					| 1. 西北工业大学凝固技术国家重点实验室 西安 710072 2. 中国科学院金属研究所 沈阳 110016
 |  
						|  |  
    					| Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃ |  
						| HUANG Taiwen1,LU Jing1,XU Yao1,WANG Dong2,ZHANG Jian2,ZHANG Jiachen1,ZHANG Jun1,LIU Lin1(  ) |  
						| 1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
 |  
								黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. Re和Ta对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.	
																												Taiwen HUANG,
																								Jing LU,
																								Yao XU,
																								Dong WANG,
																								Jian ZHANG,
																								Jiachen ZHANG,
																								Jun ZHANG,
																												Lin LIU. 
				Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. Acta Metall Sin, 2019, 55(11): 1427-1436.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																														  
																| | [1] | PollockT M, TinS. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Propuls. Power, 2006, 22: 361 |  | [2] | KonterM, ThumannM. Materials and manufacturing of advanced industrial gas turbine components [J]. J. Mater. Process. Technol., 2001, 117: 386 |  | [3] | SatoA, MoverareJ J, HasselqvistM, et al. On the mechanical behavior of a new single-crystal superalloy for industrial gas turbine applications [J]. Metall. Mater. Trans., 2012, 43A: 2302 |  | [4] | SinghK. Advanced materials for land based gas turbines [J]. Trans. Indian Inst. Met., 2014, 67: 601 |  | [5] | LiM S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 34 |  | [5] | 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 34 |  | [6] | SidhuR K, OjoO A, ChaturvediM C. Sub-solidus melting of directionally solidified René 80 superalloy during solution heat treatment [J]. J. Mater. Sci., 2008, 43: 3612 |  | [7] | GordonA P, TrexlerM D, NeuR W, et al. Corrosion kinetics of a directionally solidified Ni-base superalloy [J]. Acta Mater., 2007, 55: 3375 |  | [8] | GiameiA F, AntonD L. Rhenium additions to a Ni-base superalloy: Effects on microstructure [J]. Metall. Trans., 1985, 16A: 1997 |  | [9] | WangW Z, JinT, LiuJ L, et al. Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys [J]. Mater. Sci. Eng., 2008, A479: 148 |  | [10] | PyczakF, DevrientB, NeunerF C, et al. The influence of different alloying elements on the development of the γ/γ′ microstructure of nickel-base superalloys during high-temperature annealing and deformation [J]. Acta Mater., 2005, 53: 3879 |  | [11] | Booth-MorrisonC, NoebeR D, SeidmanD N. Effects of tantalum on the temporal evolution of a model Ni-Al-Cr superalloy during phase decomposition [J]. Acta Mater., 2009, 57: 909 |  | [12] | DurstK, G?kenM. Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys [J]. Mater. Sci. Eng., 2004, A387-389: 312 |  | [13] | WangB, ZhangJ, HuangT W, et al. Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys [J]. J. Mater. Res., 2016, 31: 1328 |  | [14] | WangB, ZhangJ, PanX J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2017, 53: 298 |  | [14] | 王 博, 张 军, 潘雪娇等. W对第三代镍基单晶高温合金组织稳定性的影响 [J]. 金属学报, 2017, 53: 298 |  | [15] | WangJ. Microstructure stability of a rhenium-containing nickel-based single crystal superalloy and thermodynamical design of low rhenium-containing alloys [D]. Shanghai: Shanghai Jiaotong University, 2011 |  | [15] | 王 静. 含铼镍基单晶高温合金组织稳定性及低铼成分的热力学设计 [D]. 上海: 上海交通大学, 2011 |  | [16] | PyczakF, DevrientB, MughrabiH. The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 827 |  | [17] | JiangX W, WangD, XieG, et al. The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy [J]. Metall. Mater. Trans., 2014, 45A: 6016 |  | [18] | PanJ S, TongJ M, TianM B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 1998: 550 |  | [18] | 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 1998: 550 |  | [19] | WangT, ChenL Q, LiuZ K. First-principles calculations and phenomenological modeling of lattice misfit in Ni-base superalloys [J]. Mater. Sci. Eng., 2006, A431: 196 |  | [20] | ZhouN, ShenC, MillsM J, et al. Phase field modeling of channel dislocation activity and γ′ rafting in single crystal Ni-Al [J]. Acta Mater., 2007, 55: 5369 |  | [21] | JenaA K, ChaturvediM C. The role of alloying elements in the design of nickel-base superalloys [J]. J. Mater. Sci., 1984, 19: 3121 |  | [22] | ShuD L, TianS G, NingT, et al. Influence of Re/Ru on concentration distribution in the γ/γ′ phases of nickel-based single crystal superalloys [J]. Mater. Des., 2017, 132: 198 |  | [23] | ZhuZ, BasoaltoH, WarnkenN, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60: 4888 |  | [24] | HobbsR A, ZhangL, RaeC M F, et al. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 ℃ [J]. Metall. Mater. Trans., 2008, 39A: 1014 |  | [25] | ShuD L, TianS G, TianN, et al. Influence of Re/Ru on concentration distribution in the γ/γ′ phase of nickel-based single crystal superalloys [J]. Mater. Des., 2017,132: 198 |  | [26] | ChenZ Q, HanY F, ZhongZ G, et al. Solubility prediction of multiple-component superalloys [J]. J. Aeronaut. Mater., 1998, 18(3): 8 |  | [26] | 陈志强, 韩雅芳, 钟振纲等. 多元高温合金固溶极限预测 [J]. 航空材料学报, 1998, 18(3): 8 | 
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |