Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 168-176    DOI: 10.11900/0412.1961.2015.00358
  论文 本期目录 | 过刊浏览 |
一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*
侯介山,郭建亭,袁超,周兰章()
中国科学院金属研究所, 沈阳 110016
STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY
Jieshan HOU,Jianting GUO,Chao YUAN,Lanzhang ZHOU()
Institute of Metal research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
Jieshan HOU, Jianting GUO, Chao YUAN, Lanzhang ZHOU. STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY[J]. Acta Metall Sin, 2016, 52(2): 168-176.

全文: PDF(10914 KB)   HTML
摘要: 

研究了不同热处理条件下σ相的回溶规律及其对合金持久性能的影响. 研究发现, 在800~900 ℃范围内经过最长1×104 h时效后, 合金中产生的σ相率先在枝晶干的M23C6碳化物附近形成, 之后扩展到枝晶间; 随着时效温度的升高, σ相形成速度加快, σ相形核的孕育时间缩短. 激活能计算结果对比表明, σ相形成初期与Co, Cr的扩散相关, 稳态阶段与Mo的扩散相关; 长期时效后合金在1000~1170 ℃固溶时, σ相都可以回溶到基体, 且固溶温度越高, σ相回溶越快. σ相的回溶动力学研究表明, σ相的回溶速度受Co的扩散过程控制. 对比持久实验结果表明, 合金中的σ相并不能使合金变脆; 经过恢复热处理, 长期时效过程中析出的σ相回溶, 持久寿命提高.

关键词 镍基高温合金长期时效沉淀固溶σ相    
Abstract

The experimental alloy is designed and employed in high-performance industrial gas turbines as low-pressure turbine blades, working in temperature range of 750~900 ℃. The alloy contains high levels of refractory elements in order to increase the high-temperature mechanical properties. However, this can make the alloy prone to the formation of σ phase during service, which could deteriorate the properties further if the fraction of σ phase exceeds the safety allowances. In this study, the formation of σ phase during long-term thermal exposure, dissolution of the σ phase during rejuvenation process and their influence on stress-rupture properties of a hot-corrosion resistant nickel base superalloy have been investigated. During long-term thermal exposure at 800~900 ℃ for up to 1×104 h, the σ phase formation is mainly in dendrite cores with a few at interdendritic regions. As the aging temperature increases, the precipitation rate of σ phase increases and the incubation time for nucleation of σ phase decreases. From the kinetic analysis, the σ phase form firstly in the vicinity or on the M23C6 in dendrite cores with the strong segregation of W, Cr and Co. The calculated activation energies of σ formation show that the early stage is related to Co and Cr diffusions and the steady stage is related to Mo diffusion. During solid solution process at 1000~1170 ℃, the σ phase precipitated during long-term thermal exposure dissolves to γ matrix. As the solid solution temperature is higher, the dissolution of σ phase becomes faster. Moreover, the σ phase does not embrittle the alloy. The reheat treatment of the alloy leads to the dissolution of precipitated σ phase and further prolongs the stress-rupture life efficiently.

Key wordsnickel base superalloy    long-term exposure    precipitation    dissolution    σ phase
收稿日期: 2015-07-07     
基金资助:*国家自然科学基金项目30170302和51571191资助
Position Cr W Co Mo Ti Al Hf Ni
Dendrite core 16.42 7.31 11.12 2.12 4.32 2.92 0.20 Bal.
Interdendritic region 14.65 3.72 10.40 2.01 4.95 3.59 0.48 Bal.
Matrix near MC 14.11 3.97 11.15 2.04 4.23 2.58 - Bal.
Matrix near M23C6 26.58 3.61 10.16 4.11 4.56 2.78 - Bal.
表 1  合金不同区域的元素浓度
图 1  合金在850 ℃时效5×103和1×104 h后的深腐蚀SEM像
图 2  合金在850 ℃时效3×103 h后的σ相的TEM像和SAED花样及σ相和基体界面的HRTEM像[9]
图 3  合金在800~900 ℃时效5×103 h后σ相组成元素的EDS分析结果
图4  合金在900 ℃时效1×103~1×104 h后组织形貌的SEM像
图5  形成一定体积分数的σ相的激活能
Position M?d B?0
Dendrite core 1.02 0.82
Interdendritic region 0.99 0.80
Matrix near MC 0.92 0.74
Matrix near M23C6 1.03 0.86
表 2  合金不同区域计算所得的固溶体平均合金元素d轨道能M?d和平均结合次数B?0
图6  在850 ℃时效5×103 h后合金经1000 ℃固溶处理不同时间后σ相的SEM像
图7  在850 ℃时效5×103 h合金经1000 ℃固溶处理60和240 min后σ相的高倍SEM像
图8  回溶处理σ相的体积分数随固溶时间变化规律及拟合关系
图9  经850 ℃时效5×103 h合金在1000和1170 ℃固溶不同时间硬度的变化
State Life
h
Elongation
%
SHT 324 11.0
SHT+thermal exposure at
850 ℃ for 5×103 h
84 11.6
SHT+thermal exposure at 850 ℃
for 5×103 h+SHT
252 8.4
表3  标准热处理态、长期时效态及恢复热处理态合金的持久性能
图10  经850 ℃时效5×103 h合金采用标准热处理制度恢复热处理后的SEM像
图11  恢复热处理前后合金900 ℃, 274 MPa持久断口形貌
[1] Rettig R, Singer R F.In: Huron E S, Reed R C, Hardy M, Mills M J, Montero R E, Portella P D, Talesman J eds., Superalloys 2012, Pennsylvania: TMS, 2012: 205
[2] Pang H T, Edmonds I M, Jones C N, Stone H J, Rae C M F. In: Huron E S, Reed R C, Hardy M, Mills M J, Montero R E, Portella P D, Talesman J eds., Superalloys 2012, Pennsylvania: TMS, 2012: 301
[3] Han Y F, Ma W Y, Dong Z Q, Li S S, Gong S K.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Pennsylvania: TMS, 2008: 91
[4] Pan Y M, Dung D S, Cragnolino G A.Metall Meter Trans, 2005; 36A: 1143
[5] Zhao S Q, Xie X S.Acta Metall Sin, 2003; 39: 399
[5] (赵双群, 谢锡善. 金属学报, 2003; 39: 399)
[6] Sun F, Zhang J X, Liu P, Feng Q, Han X D, Mao S C. J Alloys Compd, 2012; 536: 80
[7] Shi Z X, Li J R, Liu S Z.Prog Nat Sci: Mater Int, 2012; 22: 426
[8] El-Bagoury N, Mohsen Q.Phase Transitions, 2011; 84: 1108
[9] Hou J S, Guo J T, Zhou L Z, Ye H Q.Z Metallkund, 2006; 2: 174
[10] Hou J S, Zhou L Z, Yuan C, Guo J T, Wang W, Qin X Z, Liaw P K.Mater Charact, 2013; 77: 47
[11] Leclaire A D.In: Brandes E A, Brook E B eds., Smithells Metals Reference Book. Oxford: Butterworth-Heinemann, Linacre House, Jordan Hill, 1992: 131
[12] Zhou C, Gong W, Huang S, Wei H.J Min Metall, 2011; 47B: 171
[13] Cheng K Y, Jo C Y, Jin T, Hu Z Q.Mater Sci Eng, 2011; A528: 2704
[14] Mao P L, Xin Y, Han K, Wei G J.Acta Metall Sin (Engl Lett), 2009; 22: 365
[15] Cui T, Zhang Y S, Guo S, Wang L, Yang H C.Acta Metall Sin (Engl Lett), 2004; 17: 645
[16] Tian S G, Qian B J, Li T, Yu L L, Wang M G.Chin J Nonferrous Met, 2010; 20: 2154
[16] (田素贵, 钱本江, 李唐, 于莉丽, 王明罡. 中国有色金属学报, 2010; 20: 2154)
[17] Zhang B J, Wang L, Xu G H, Qin H Y, Zhao G P.J Mater Metall, 2012; 11: 136
[17] (张北江, 王磊, 胥国华, 秦鹤勇, 赵光普. 材料与冶金学报, 2012; 11: 136)
[18] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H.Scr Mater, 2003; 49: 1041
[19] Kobayashi T, Koizumi Y, Nakazawa S, Yamagata T, Harada H.In: Strang A, Banks W M, Conroy R D, Goulette M J eds., Proc 4th Int Charles Parsons Turbine Conference, Newcastle upon Tyne: Maney Publishing, 1997: 766
[20] Dong J X, Xie X S, Fujio Abe. J Mater Eng, 2000; (11): 15
[20] (董建新, 谢锡善, 阿部富士雄. 材料工程, 2000; (11): 15)
[21] Chen G S, Yao C C, Zhong Z Y.Acta Metall Sin, 1978; 14: 284
[21] (陈淦生, 姚常春, 仲增墉. 金属学报, 1978; 14: 284)
[22] Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 677
[23] Divya V D, Balam S S K, Ramamurty U, Paul A.Scr Mater, 2010; 62: 621
[24] Acharya M V, Fuchs G E.Scr Mater, 2006; 54: 61
[25] Seiser B, Drautz R, Pettifor D G.Acta Mater, 2011; 59: 749
[26] Tin S, Pollock T M.Mater Sci Eng, 2003; A348: 111
[27] Monastyrskaia E V, Petrov E V, Beljaev V E, Dushkin A M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 779
[28] Karunaratne M S A, Cox D C, Carter P, Reed R C. In: Green K A, Pollock T M, Kissinger R D eds., Superalloys 2000, Warrendale: TMS, 2000: 263
[29] Darolia R, Lahrmann D F, Field R D.In: Reichman S, Dhul D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: TMS, 1988: 255
[30] Erickson G L.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 35
[31] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 9
[32] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C. In: Green K A, Pollock T M, Kissinger R D eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[33] Flemings M C. Solidification Processing.New York: McGraw Hill Inc., 1974: 331
[34] Walston W S.In: Fuchs G E, Dannemann K A, Deragon T A eds., Long-Term Stability of High Temperature Materials. Warrendale, PA: TMS, 1999: 43
[35] Morinaga M, Yukawa N, Ezaki H.Philos Mag, 1995; 51A: 223
[36] Chen Q Z, Jones C N, Knowles D M.Acta Mater, 2002; 50: 1095
[37] Pyczak F, Mughrabi H.In: Morris D G, Naka S, Caron P eds., Intermetallics and Superalloys. Weinheim: Wiley-VCH, 2000: 47
[38] Keefe P W, Mancuso S O, Maurer G E.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstron D L eds., Superalloy 1992, Warrendale: TMS, 1992: 487
[39] Na Y S, Park N K, Reed R C.Scr Mater, 2000; 43: 585
[40] Li X, Miodownik A P, Saunders N.Mater Sci Technol, 1998; 18: 861
[41] Plati A. Master Thesis, University of Cambridge, 2003
[42] Burke J.The Kinetics of Phase Transformations in Metals. Oxford: Pergamon Press, 1965: 1
[43] Kim H T, Chun S S, Yao X X, Fang Y, Choi J.J Mater Sci, 1997; 32: 4917
[44] Moshtaghin R S, Asgari S.Mater Des, 2003; 24: 325
[45] Jackson M P, Reed R C.Mater Sci Eng, 1999; A259: 85
[46] Bryant D J, McIntosh Dr G. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 713
[47] Rae C M F, Reed R C.Acta Metall, 2001; 49: 4113
[48] Acharya M V, Fuchs G E.Mater Sci Eng, 2004; A381: 143
[49] Durand-Charre M.The Microstructure of Superalloys. Singapore: Gordon and Breach Science Publishers, 1997: 3
[50] Copley S M, Giamei A F, Johnson S M, Hornbeck M F.Metall Trans, 1970; 1: 2193
[51] Zhang J S, Hu Z Q, Murata Y, Morinaga M, Yukawa N.Metall Trans, 1993; 24A: 2443
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[13] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[14] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[15] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.