Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 939-950    DOI: 10.11900/0412.1961.2018.00405
  本期目录 | 过刊浏览 |
核聚变堆用W及其合金辐照损伤行为研究进展
吴玉程1,2,3()
1. 合肥工业大学材料科学与工程学院 合肥 230009
2. 合肥工业大学有色金属与加工技术国家地方联合工程研究中心 合肥 230009
3. 太原理工大学新材料界面科学与工程教育部重点实验室 太原 030024
Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor
Yucheng WU1,2,3()
1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2. National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China
3. Key Laboratory of Interface Science and Engineering of New Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. Acta Metall Sin, 2019, 55(8): 939-950.

全文: PDF(10703 KB)   HTML
摘要: 

受控热核聚变能作为一种清洁且原材料丰富的终极理想能源,被认为是未来能够有效解决能源问题的主要途径。而在实际聚变反应过程中,面向等离子体材料(plasma facing materials,PFMs)需要面临极其苛刻和恶劣的环境。W及其合金是目前最具有应用前途的PFMs的候选材料,但由于其低温脆性、再结晶脆性和辐照脆化等性能方面的不足,还不能达到PFMs的使用要求。本文对W及其合金在不同辐照粒子下的损伤行为的机制进行了详细阐述,并对相关领域近年来的研究进展进行了综合评述和展望,旨在为后期钨基材料辐照方面的研究提供参考。

关键词 核聚变W面向等离子体材料辐照损伤    
Abstract

Controlled thermonuclear fusion energy, regarded as the ultimate and ideal energy source, is considered as the principle way to effectively solve the future energy problem because of its cleaning and abundant raw materials. In the actual fusion reaction process, plasma facing materials (PFMs) will have to face the extremely harsh and severe environment. W and its alloys are the most promising PFMs candidate materials for the present reference design. However, due to its low-temperature brittleness, recrystallization brittleness, radiation-reduced brittleness and other disadvantages, they are still far from all the requirements of PFMs. In this paper, the principles of damage behavior under different irradiation particles were described in detail, and the research progress in related fields in recent years was also reviewed, in order to provide references for the research on the irradiation of W-based materials in the future.

Key wordsnuclear fusion    W    plasma facing material    irradiation damage
收稿日期: 2018-08-31     
ZTFLH:  TL34  
基金资助:国家重大基础研究磁约束核聚变项目(No.2014GB121001B);国家自然科学基金项目((Nos.51474083, 51574101, 51674095 and 51675154));高等学校学科创新引智计划项目(No.B18018)
作者简介: 吴玉程,男,1962年生,教授
图1  W中(110)晶面处2~9个He原子聚集形成间隙氦原子层状结构的示意图[19]
图2  珊瑚状纳米丝和较高温度下树状纳米丝形成过程[28]
图3  W-TiC合金及商业W在5 keV、900 ℃氦辐照前后的TEM像[36]
图4  W、W-3%Re和W-5%Re试样fuzz结构截面图及3组试样的fuzz厚度分布图以及对应的SEM像[37]
图5  单空位中捕获不同数量H原子时的原子结构图及其最佳等值面示意图[45]
图6  W试样在同一辐照剂量(2.25×1021 m-2)、不同温度(500、600和800 ℃)下辐照后,H泡密度与平均直径曲线图及气泡直径分布区间图[47]
图7  快中子辐照下W中显微组织演变原理图[64,65]
图8  在不同辐照温度及剂量下各类缺陷对材料辐照硬化的影响[67]
图9  未损伤、300 K下0.2 dpa辐照剂量和1240 K下0.2 dpa辐照剂量试样的TDS图谱[79]
[1] Arnoux R. Which was the first “tokamak”—or was it “tokomag”? 27 Oct. 2008, https://www.iter.org/newsline/55/1194
[2] Wang L. Experimental Physics of Magnetic Confinement Plasmas [M]. Beijing: Science Press, 2018: 23
[2] (王龙. 磁约束等离子体实验物理 [M]. 北京: 科学出版社, 2018: 23)
[3] Ongena J, Ogawa Y. Nuclear fusion: Status report and future prospects [J]. Energy Policy, 2016, 96: 770
[4] Li J G. The status and progress of tokamak research [J]. Physics, 2016, 45: 88
[4] (李建刚. 托卡马克研究的现状及发展 [J]. 物理, 2016, 45: 88)
[5] Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415: 957
[6] Luo L M, Shi J, Zan X, et al. Current status and development trend on alloying elements-doped plasma-facing tungsten-based materials [J]. Chin. J. Nonferrous Met., 2016, 26: 1889
[6] (罗来马, 施静, 昝祥等. 掺杂合金元素面向等离子体钨基材料的研究现状与发展趋势 [J]. 中国有色金属学报, 2016, 26: 1889)
[7] Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt [J]. Powder Technol., 2014, 253: 464
[8] Tokar M Z, Coenen J W, Philipps V, al et, the TEXTOR Team. Tokamak plasma response to droplet spraying from melted plasma-facing components [J]. Nucl. Fusion, 2012, 52: 013013
[9] Kurishita H, Kobayashi S, Nakai K, et al. Current status of ultra-fine grained W-TiC development for use in irradiation environments [J]. Phys. Scr., 2007, T128: 76
[10] Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
[11] El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline- grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
[12] Shen T D, Gao X H, Yu K Y. Progress in radiation tolerant nanomaterials [J]. J. Yanshan Univ., 2014, 38: 283
[12] (沈同德, 高欣海, 于开元. 抗辐照纳米材料的研究进展 [J]. 燕山大学学报, 2014, 38: 283)
[13] Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials [M]. Beijing: National Defend Industry Press, 2017: 185
[13] (郭立平, 罗凤凤, 于雁霞. 核材料辐照位错环 [M]. 北京: 国防工业出版社, 2017: 185)
[14] Yang Q, Fan H Y, Ni W Y, et al. Observation of interstitial loops in He+ irradiated W by conductive atomic force microscopy [J]. Acta Mater., 2015, 92: 178
[15] Gao L, von Toussaint U, Jacob W, et al. Suppression of hydrogen-induced blistering of tungsten by pre-irradiation at low temperature [J]. Nucl. Fusion, 2014, 54: 122003
[16] Zibrov M, Balden M, Morgan T W, et al. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences [J]. Nucl. Fusion, 2017, 57: 046004
[17] Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
[18] Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001
[19] You Y W, Li D D, Kong X S, et al. Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment [J]. Nucl. Fusion, 2014, 54: 103007
[20] Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. J. Nucl. Mater., 2000, 283-287: 1134
[21] Becquart C S, Domain C. Migration energy of He in W revisited by Ab initio calculations [J]. Phys. Rev. Lett., 2006, 97: 196402
[22] Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation on plasma facing metals [J]. J. Nucl. Mater., 2005, 337-339: 946
[23] Alimov V K, Roth J. Hydrogen isotope retention in plasma-facing materials: Review of recent experimental results [J]. Phys. Scr., 2007, T128: 6
[24] Valles G, Martin-Bragado I, Nordlund K, et al. Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation [J]. J. Nucl. Mater., 2017, 490: 108
[25] Wirtz M, Berger M, Huber A, et al. Influence of helium induced nanostructures on the thermal shock performance of tungsten [J]. Nucl. Mater. Energy, 2016, 9: 177
[26] Tokunaga K, Fujiwara T, Ezato K, et al. Effects of helium implantation on damage during pulsed high heat loading of tungsten [J]. J. Nucl. Mater., 2007, 367-370: 812
[27] Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4: 104002
[28] Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
[29] Ito A M, Takayama A, Oda Y, et al. Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation [J]. Nucl. Fusion, 2015, 55: 073013
[30] Yi X O, Arakawa K, Nguyen-Manh D, et al. A study of helium bubble production in 10 keV He+ irradiated tungsten [J]. Fusion Eng. Des., 2017, 125: 454
[31] Gonderman S, Tripathi J K, Novakowski T J, et al. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions [J]. J. Nucl. Mater., 2017, 491: 199
[32] Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation [J]. Plasma Fusion Res., 2006, 1: 051
[33] Baldwin M J, Doerner R P. Formation of helium induced nanostructure 'fuzz' on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
[34] Lin J S, Luo L M, Xu Q, et al. Microstructure and deuterium retention after ion irradiation of W-Lu2O3 composites [J]. J. Nucl. Mater., 2017, 490: 272
[35] Kurishita H, Kobayashi S, Nakai K, et al. Development of ultra-fine grained W-(0.25—0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations [J]. J. Nucl. Mater., 2008, 377: 34
[36] Xu Q, Ding X Y, Luo L M, et al. Thermal stability and evolution of microstructures induced by He irradiation in W-TiC alloys [J]. Nucl. Mater. Energy, 2018, 15: 76
[37] Khan A, De Temmerman G, Morgan T W, et al. Effect of rhenium addition on tungsten fuzz formation in helium plasmas [J]. J. Nucl. Mater., 2016, 474: 99
[38] Roth J, Schmid K. Hydrogen in tungsten as plasma-facing material [J]. Phys. Scr., 2011, T145: 014031
[39] Henriksson K O E, Nordlund K, Krasheninnikov A, et al. Difference in formation of hydrogen and helium clusters in tungsten [J]. Appl. Phys. Lett., 2005, 87: 163113
[40] Heinola K, Ahlgren T, Nordlund K, et al. Hydrogen interaction with point defects in tungsten [J]. Phys. Rev., 2010, 82B: 094102
[41] Johnson D F, Carter E A. Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion [J]. J. Mater. Res., 2010, 25: 315
[42] You Y W, Kong X S, Wu X B, et al. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals [J]. AIP Adv., 2013, 3: 012118
[43] Guerrero C, González C, Iglesias R, et al. First principles study of the behavior of hydrogen atoms in a W monovacancy [J]. J. Mater. Sci., 2016, 51: 1445
[44] Ohsawa K, Eguchi K, Watanabe H, et al. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals [J]. Phys. Rev., 2012, 85B: 094102
[45] Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys. Rev., 2009, 79B: 172103
[46] Zhou H B, Liu Y L, Jin S, et al. Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism [J]. Nucl. Fusion, 2010, 50: 025016
[47] Hu W H, Luo F F, Shen Z Y, et al. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions [J]. Fusion Eng. Des., 2015, 90: 23
[48] Huber A, Sergienko G, Wirtz M, et al. Deuterium retention in tungsten under combined high cycle ELM-like heat loads and steady-state plasma exposure [J]. Nucl. Mater. Energy, 2016, 9: 157
[49] Wang W M, Roth J, Lindig S, et al. Blister formation of tungsten due to ion bombardment [J]. J. Nucl. Mater., 2001, 299: 124
[50] Alimov V K, Hatano Y, Sugiyama K, et al. Surface morphology and deuterium retention in tungsten and tungsten-rhenium alloy exposed to low-energy, high flux D plasma [J]. J. Nucl. Mater., 2014, 454: 136
[51] Chen H Y, Luo L M, Chen J B, et al. Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3 composites [J]. Sci. Rep., 2016, 6: 32678
[52] Taylor C N, Shimada M, Merrill B J. Deuterium retention and blistering in tungsten foils [J]. Nucl. Mater. Energy, 2017, 12: 689
[53] Haasz A A, Poon M, Davis J W, et al. The effect of ion damage on deuterium trapping in tungsten [J]. J. Nucl. Mater., 1999, 266-269: 520
[54] Ogorodnikova O V. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure [J]. J. Appl. Phys., 2015, 118: 074902
[55] Ogorodnikova O V, Markelj S, von Toussaint U. Interaction of atomic and low-energy deuterium with tungsten pre-irradiated with self-ions [J]. J. Appl. Phys., 2016, 119: 054901
[56] Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten [J]. J. Nucl. Mater., 2002, 307-311: 135
[57] Nishijima D, Sugimoto T, Iwakiri H, et al. Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure [J]. J. Nucl. Mater., 2005, 337-339: 927
[58] Sakoi Y, Miyamoto M, Ono K, et al. Helium irradiation effects on deuterium retention in tungsten [J]. J. Nucl. Mater., 2013, 442: S715
[59] Liu X, Ma J M, Guo H B. Neutron irradiation damage for first wall materials in hybrid reactor [J]. High Power Laser Part. Beams, 2015, 27(1): 016010
[59] ((刘 晓, 马纪敏, 郭海兵. 混合堆第一壁中子辐照损伤模拟 [J]. 强激光与粒子束, 2015, 27(1): 016010)
[60] Williams R K, Wiffen F W, Bentley J, et al. Irradiation induced precipitation in tungsten based, W-Re alloys [J]. Metall. Trans., 1983, 14A: 655
[61] Fukuda M, Yabuuchi K, Nogami S, et al. Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR [J]. J. Nucl. Mater., 2014, 455: 460
[62] Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
[63] Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
[64] Marian J, Becquart C S, Domain C, et al. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions [J]. Nucl. Fusion, 2017, 57: 092008
[65] Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
[66] Xu A, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
[67] Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
[68] Fukuda M, Kumar N A P K, Koyanagi T, et al. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten [J]. J. Nucl. Mater., 2016, 479: 249
[69] Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
[70] Liu C S, Wu X B, Yu Y W, et al. First-principles study of hydrogen and helium behaviors of plasma-facing tungsten in nuclear fusion reactors [J]. J. Anhui Normal Univ. (Nat. Sci.), 2016, 39: 307
[70] (刘长松, 吴学邦, 尤玉伟等. 核聚变堆面向等离子体钨基材料氢氦效应的第一性原理研究 [J]. 安徽师范大学学报(自然科学版), 2016, 39: 307)
[71] Shimada M, Hatano Y, Calderoni P, et al. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE [J]. J. Nucl. Mater., 2011, 415: S667
[72] Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
[73] Hasenhuetl E, Zhang Z X, Yabuuchi K, et al. Effect of displacement damage level on the ion-irradiation affected zone evolution in W single crystals [J]. J. Nucl. Mater., 2017, 495: 314
[74] Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
[75] Luo L M, Xu M Y, Zan X, et al. Progress in irradiation damage of tungsten and tungsten alloys under different irradiation particles [J]. Mater. Rev., 2018, 32: 41
[75] (罗来马, 徐梦瑶, 昝祥等. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展 [J]. 材料导报, 2018, 32: 41)
[76] Seeger A, Schumacher D, Schilling W, et al. Vacancies and Interstitials in Metals [M]. Amsterdam: North Holland Publishing Co, 1970: 1
[77] Kong F H, Qu M, Yan S, et al. Influence of Au ions irradiation damage on helium implanted tungsten [J]. Nucl. Instrum. Methods Phys. Res., 2017, 409B: 192
[78] Wang H W, Gao Y, Fu E G, et al. Effect of high fluence Au ion irradiation on nanocrystalline tungsten film [J]. J. Nucl. Mater., 2013, 442: 189
[79] Tynan G R, Doerner R P, Barton J, et al. Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten [J]. Nucl. Mater. Energy, 2017, 12: 164
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[7] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[8] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[11] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[12] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[13] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[14] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[15] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.