Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 150-170    DOI: 10.11900/0412.1961.2020.00169
  综述 本期目录 | 过刊浏览 |
抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展
刘悦1(), 汤鹏正1, 杨昆明1, 沈一鸣2, 吴中光2, 范同祥1()
1.上海交通大学 金属基复合材料国家重点实验室 上海 200240
2.上海航天技术研究院 上海 201109
Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials
LIU Yue1(), TANG Pengzheng1, YANG Kunming1, SHEN Yiming2, WU Zhongguang2, FAN Tongxiang1()
1.State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
引用本文:

刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
Yue LIU, Pengzheng TANG, Kunming YANG, Yiming SHEN, Zhongguang WU, Tongxiang FAN. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. Acta Metall Sin, 2021, 57(2): 150-170.

全文: PDF(4066 KB)   HTML
摘要: 

在高能粒子辐照条件下,金属基结构材料内部会出现不同类型的缺陷,这些辐照诱导缺陷的大规模聚集会造成损伤,降低材料的结构稳定性,从而严重影响结构材料的力学和物理性能。通过材料设计的手段引入界面充当缺陷陷阱,可通过对辐照诱导缺陷的分离、吸收和湮灭,有效减轻材料的辐照损伤。纳米结构材料由于含有高密度界面,其辐照损伤行为的研究于近20年快速发展,且界面能被证实是影响界面调控辐照损伤的重要因素。本文聚焦金属基纳米结构材料,围绕界面设计,详细阐述了低能和高能界面设计下,不同结构类型的界面对辐照损伤的影响及界面响应行为的研究进展,为进一步实现界面结构优化,平衡界面能、界面结构稳定性及良好辐照抗性之间的关系提供理论基础和科学依据。最后,基于前述界面设计的思想,总结了近年来发展的碳/金属界面设计及抗辐照损伤的研究进展,展望了未来先进抗辐照金属基纳米结构材料的设计和发展。

关键词 辐照损伤金属基纳米结构材料界面结构设计界面响应行为碳/金属界面    
Abstract

High-energy particle irradiation can often cause microstructure damage, resulting in different types of defects in metal-based structured materials. These irradiation-induced defects can accumulate and evolve, leading to the deformation and reduction of the structural integrity of the materials. Finally, this causes the degradation of the mechanical and physical properties of the aforementioned materials. These defects can be shielded, absorbed, and annihilated by introducing interfaces in materials, alleviating the radiation damage. In the previous two decades, metal-based nanostructured materials have attracted considerable attention in designing irradiation-resistant materials because of its high density of internal interfaces. This review aims to investigate the effect of the interface microstructure and energy on strengthening the irradiation resistance of metal-based nanostructured materials, with special emphasis on the interface responses of low- and high-energy interfaces. Furthermore, this review provides the theoretical and scientific foundation for optimizing the interface structure design and exhibits delicate balance between the interface microstructure, interface energy, interface stability, and irradiation resistance. In addition, the recent research progress on irradiation-resistant carbon-/metal-based nanostructured materials that consider such interface characteristics is reviewed in detail. Finally, the prospect of future irradiation-resistant metal-based nanostructured material development is discussed.

Key wordsradiation damage    metal-based nanostructured materials    interface microstructural design    interface response behavior    carbon/metal interface
收稿日期: 2020-05-21     
ZTFLH:  TB331  
基金资助:国家自然基金项目(51901129);国家重点研发计划项目(2017YFB0703101)
作者简介: 刘 悦,1986年生,男,副教授,博士
图1  共格孪晶界设计及其对辐照损伤的响应行为[14,26~28,31](a) cavity formation near the GB triple-junction[14](b) cavities near the twin boundary with its corresponding selected area electron diffraction (SAED) pattern[14](c, d) atomistic images showing a dumbbell crossing a CTB during equilibration after radiation cascade[28](e1-e7) in situ snapshots and schematics of distortion and self-healing of CTBs[26](f1-f6) schematics illustrate the capturing of defect clusters by CTBs and their self-healing mechanism(g) the interaction of lattice glide dislocation with a CTB, forming defective CTB[31](h) defective CTBs prevailing in deformed nanotwinned Cu structure. Some selected kinks are marked with white arrows. The portion of CTBs marked with an X is perfect TBs without defects[27]
图2  共格异质界面设计及其对辐照损伤的响应行为[32,34]
图3  非共格孪晶界设计及其对辐照损伤的响应行为[37,38](a-c) in situ snapshots showing the migration and absorption of defect clusters by an ITB at the dose of about 0.85 dpa[37] (d-g) absorption and diffusion of interstitials in nanovoid-nanotwinned (nv-nt) Cu[38] (d) fast interstitial diffusion pipes enabled by incoherent twin boundary (ITB)-CTB networks in nanotwinned Cu (e) two fast diffusion channels at ITBs (Ef, Em—formation and migration energies, respectively) (f, g) the corresponding diffusion mechanisms (h-m) snapshots recorded during in situ irradiation in TEM and corresponding schematics showing the continuous evolution of twin boundaries over a dose range of 0.766-0.898 dpa[37] (n, o) schematics of ITB migration mechanisms during irradiation[37]
图4  密度泛函理论计算Fe原子掺杂后非共格孪晶界的稳定性[43](a-e) configurations of Fe impurities in Ag at interstitial and substitutional sites at different locations used for DFT simulations(f) creation of an intrinsic stacking fault in Ag with and without Fe substitutional atom (via shear displacement) showing the increase of the stable stacking fault energy by 12 mJ/m2, and the increase of unstable stacking fault energy by about 5 mJ/m2(g) comparison of migration energy barrier for a coherent twin boundary with and without the Fe substitutional atom showing an increase of energy barrier by about 6 mJ/m2 with Fe substitutional atom at the original twin boundary
图5  大角度晶界设计及界面与缺陷的相互作用[8,13,51](a) defects near a triple junction in polycrystalline Cu irradiated at 450oC by 200 keV He ions with fluence of 2×1017 ions/cm2 (The inset is the corresponding electron backscatter diffraction (EBSD) image)[13](b) the determination of void-denuded zones (VDZ) for one grain boundary (GB) with 49°. All images were taken under a defocus of -5 μm[13] (λ—VDZ width)(c) VDZ width as a function of misorientation for non-CTB ∑3 and ∑3 GBs[13] (d-k) in situ evidence of absorption of individual loops or a dislocation segment by GBs of nanocrystalline Ni[51] (l-q) selected snapshots of damage self-healing near the GB from temperature accelerated dynamics (TAD) simulations. The symbols are defined as follows: larger green spheres, interstitials; red cubes, vacancies; smaller blue spheres, atoms that move more than 1 nm during an event (between the frames immediately before and after); purple vectors, the moving directions and distances of moving atoms (Ea—activation barriers)[8] (l) after 21.3 ns, the five vacancies below the GB form a cluster (m, n) at 23.0 ns, three interstitials emit from the GB with a barrier of 0.17 eV to annihilate three vacancies. Note that Fig.5m shows how atoms move during this transition, and Fig.5n shows the final configuration after the event is completed (o, p) configurations before and after the last interstitial emission event at 23.8 ns (q) at 348.0 ns, the two vacancies above the GB diffuse to the GB via the slower conventional hopping mechanism
图6  纳米晶304奥氏体不锈钢掺杂La元素后的原子探针和透射电镜表征[58](b) a bright-field TEM image and corresponding APT Si atom map of a thin slice (5?nm in thickness) reconstructed volume, with 14 resolved nanograins marked as 1-14, respectively and GBs decorated with La-rich nanoprecipitates (NPs). 1D composition profiles across GB5–6, GB6–7, and GB7–8, as marked by green arrows in the Si map, showing the segregation of Si, La, and O at GBs(c) a top magnified combined atom map of Si and La from a small reconstructed region with GBs decorated with La-rich NPs, a bottom combined Fe, Si, and La map of a small framed region of a grain containing a La-rich NP defined by iso-surfaces of 2.5%La (atomic fraction) and fine La-rich clusters. The right proxigrams from La-rich NPs in different sizes reveal their compositions of La-rich NPs at GBs and in grain interiors. The particle size (d) of NPs is defined as the equivalent spherical diameter
图7  半共格异质界面与辐照缺陷的相互作用[10,63,68](a-d) in situ observation of dislocation loops absorbed by layer interface over a dose range of 0.131-0.133 dpa (0.262×1014-0.266×1014 ions/cm2)[10](e) schematic of interaction between two coaxial dislocation loops with opposite Burgers vectors[10] (f-h) simulations of 1.5 keV collision cascades in Cu/Nb multilayer composite (f), perfect crystalline fcc copper (g), and perfect crystalline bcc niobium (h)[63] (i, j) interface stress enhancing the sink strength of layer interfaces: Migration paths and local concentrations of vacancies (i) and interstitials (j) on the Ag side of the semi-coherent Ag-Cu interface[68] (k, l) enhancement in sink strength of semi-coherent Ag-Cu interfaces for vacancies (k) and interstitials (l) in Cu are plotted as functions of layer thickness (kv2 and ki2 are the sink strengths for vacancies and interstitials, respectively, d1—layer thickness)[68]
图8  半共格异质界面失配位错序列设计[74,78](a, b) the MDIs in Cu/Nb and Cu/V interfaces (The dashed lines indicate interface misfit dislocations)[74](c) the black dots present the areal densities of MDIs calculated by O-lattice theory for a range of fcc/bcc pairs with different lattice parameter ratios, but identical interface crystallography (Kurdjumov-Sachs orientation relation and closest-packed interface planes); the red diamonds are critical He concentrations measured to detect He bubbles in TEM; and the dashed line is a visual guide[74] (d-i) plan-view images of He channels[78] (d-g) underfocused plan-view TEM micrographs (400-nm underfocus) of the V/Cu/V trilayer after He implantation to fluences of 1×1015 ions/cm2 (d), 3×1015 ions/cm2 (e), 5×1015 ions/cm2 (f), and 1×1016 ions/cm2 (g) (h, i) an isolated precipitate from a sample implanted to 3×1015 ions/cm2 appears bright in underfocus (h) and dark in overfocus (i) imaging conditions (400-nm overfocus), confirming that it is an elongated, He filled cavity
图9  碳纳米管/金属界面抗辐照响应行为研究[79,81](a-d) SEM images of highly porous control Al (a) and Al+1%CNT (volume fraction) (b), and indented area observations on control Al (c) and Al+CNT composites (d)[79](e) schematic of shape changes on CNT, recombination, and helium out-gas[79] (f-h) molecular dynamics (MD) simulation snapshots (Ni: small red dots, C: small black spheres, He: blue spheres)[81] (f) at t=0, when Ni/C atoms are replaced at random by He (g) evolution 0.05 ns later (h) 1.0 ns later. In Figs.9g and h, He atoms are diffusing along the interior and exterior walls of the CNT, far from the CNT center. When no CNT wall defects are included He atoms diffuse only along the CNT external wall
图10  石墨烯/金属界面抗辐照响应行为研究[82~84](a) TEM image of as-deposited W nanofilm irradiated by 50 keV He+ ions to a total influence of 1×1017 ions/cm2 [82](b) TEM image of peak He concentration region under 50 keV He+ irradiation in W15/Gr to a total influence of 5×1016 ions/cm2[82](c) schematic of the experimental setup for characterizing the thermal resistance[82] (d, e) SEM images of nanopillars after compression testing for He+ irradiated pure V (d) and V-graphene with 110 nm repeat layer spacing indicating that the crack propagation was suppressed by the graphene interface (e)[83] (f) schematic of simulation[83] (g) damage on graphene after the knock-on event[83] (h) the collision cascade after the knock-on event for d=1.5 nm. The amount of cascade is significantly reduced by the graphene layer. Significantly more defects remain in the pure V. Atoms with high potential energy (above -4.4 eV) are visualized selectively[83] (i) the formation energies of vacancies are significantly lower at the graphene interface than that in the bulk lattice of V[83] (j) number of surviving defects in the bulk region, generated by a 3 keV primary knock-on atom (PKA) away from the interface about 1.54 nm, as a function of temperature[84] (k) effects of the displacement cascades generated by a 100 keV PKA on the different layers of graphene of Gr/Cu nanolayered composites, viewed in the z-direction[84]
1 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
2 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
3 Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
4 Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
5 Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. New York: Springer, 2007: 827
6 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
7 Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
8 Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
9 Cheng G M, Xu W Z, Wang Y Q, et al. Grain size effect on radiation tolerance of nanocrystalline Mo [J]. Scr. Mater., 2016, 123: 90
10 Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
11 Han W Z, Demkowicz M J, Mara N A, et al. Design of radiation tolerant materials via interface engineering [J]. Adv. Mater., 2013, 25: 6975
12 Fu E G, Caro M, Zepeda-Ruiz L A, et al. Surface effects on the radiation response of nanoporous Au foams [J]. Appl. Phys. Lett., 2012, 101: 191607
13 Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
14 Gao J, Liu Z J, Wan F R. Limited effect of twin boundaries on radiation damage [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 72
15 Mao S M, Shu S P, Zhou J, et al. Quantitative comparison of sink efficiency of Cu-Nb, Cu-V and Cu-Ni interfaces for point defects [J]. Acta Mater., 2015, 82: 328
16 Vattré A J, Abdolrahim N, Kolluri K, et al. Computational design of patterned interfaces using reduced order models [J]. Sci. Rep., 2014, 4: 6231
17 Beyerlein I J, Demkowicz M J, Misra A, et al. Defect-interface interactions [J]. Prog. Mater. Sci., 2015, 74: 125
18 Vetterick G A, Gruber J, Suri P K, et al. Achieving radiation tolerance through non-equilibrium grain boundary structures [J]. Sci. Rep., 2017, 7: 12275
19 Qin W J, Ren F, Doerner R P, et al. Nanochannel structures in W enhance radiation tolerance [J]. Acta Mater., 2018, 153: 147
20 Fan C, Li J, Fan Z, et al. In situ studies on the irradiation-induced twin boundary-defect interactions in Cu [J]. Metall. Mater. Trans., 2017, 48A: 5172
21 Tang X Z, Guo Y F, Fan Y, et al. Interstitial emission at grain boundary in nanolayered alpha-Fe [J]. Acta Mater., 2016, 105: 147
22 Bufford D, Wang H, Zhang X. High strength, epitaxial nanotwinned Ag films [J]. Acta Mater., 2011, 59: 93
23 Hodge A M, Furnish T A, Shute C J, et al. Twin stability in highly nanotwinned Cu under compression, torsion and tension [J]. Scr. Mater., 2012, 66: 872
24 Demkowicz M J, Anderoglu O, Zhang X H, et al. The influence of 3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu [J]. J. Mater. Res., 2011, 26: 1666
25 Yu K Y, Bufford D, Sun C, et al. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals [J]. Nat. Commun., 2013, 4: 1377
26 Li J, Yu K Y, Chen Y, et al. In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals [J]. Nano Lett., 2015, 15: 2922
27 Wang Y M, Sansoz F, Lagrange T, et al. Defective twin boundaries in nanotwinned metals [J]. Nat. Mater., 2013, 12: 697
28 Jiao S Y, Kulkarni Y. Radiation tolerance of nanotwinned metals—An atomistic perspective [J]. Comp. Mater. Sci., 2018, 142: 290
29 Jin Z H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals [J]. Acta Mater., 2008, 56: 1126
30 Wang J, Huang H. Novel deformation mechanism of twinned nanowires [J]. Appl. Phys. Lett., 2006, 88: 203112.
31 Li N, Wang J, Misra A, et al. Twinning dislocation multiplication at a coherent twin boundary [J]. Acta Mater., 2011, 59: 5989
32 Chen Y X, Fu E G, Yu K Y, et al. Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces [J]. J. Mater. Res., 2015, 30: 1300
33 Fu E G, Misra A, Wang H, et al. Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers [J]. J. Nucl. Mater., 2010, 407: 178
34 Chen Y, Liu Y, Fu E G, et al. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J]. Acta Mater., 2015, 84: 393
35 Heinisch H L, Gao F, Kurtz R J. The effects of interfaces on radiation damage production in layered metal composites [J]. J. Nucl. Mater., 2004, 329-333: 924
36 Wang J, Misra A, Hirth J P. Shear response of 􀰑3 {112} twin boundaries in face-centered-cubic metals [J]. Phys. Rev., 2011, 83B: 064106
37 Yu K Y, Bufford D, Khatkhatay F, et al. In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag [J]. Scr. Mater., 2013, 69: 385
38 Chen Y, Yu K Y, Liu Y, et al. Damage-tolerant nanotwinned metals with nanovoids under radiation environments [J]. Nat. Commun., 2015, 6: 7036
39 Li N, Wang J, Wang Y Q, et al. Incoherent twin boundary migration induced by ion irradiation in Cu [J]. J. Appl. Phys., 2013, 113: 023508
40 Borovikov V, Mendelev M I, King A H. Effects of solutes on the thermal stability of nanotwinned materials [J]. Philos. Mag., 2014, 94: 2875
41 Zhu H Y, Liu S, Liu Z R, et al. Tailoring the stability of {101¯2} twins in magnesium with solute segregation at the twin boundary and strain path control [J]. Comp. Mater. Sci., 2018, 152: 113
42 Fan C C, Xie D Y, Li J, et al. 9R phase enabled superior radiation stability of nanotwinned Cu alloys via in situ radiation at elevated temperature [J]. Acta Mater., 2019, 167: 248
43 Li J, Xie D Y, Xue S, et al. Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy [J]. Acta Mater., 2018, 151: 395
44 Tschopp M A, Solanki K N, Gao F, et al. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe [J]. Phys. Rev., 2012, 85B: 064108
45 Barr C M, Barnard L, Nathaniel J E, et al. Grain boundary character dependence of radiation-induced segregation in a model Ni-Cr alloy [J]. J. Mater. Res., 2015, 30: 1290
46 Jiang C, Swaminathan N, Deng J, et al. Effect of grain boundary stresses on sink strength [J]. Mater. Res. Lett., 2014, 2: 100
47 El-Atwani O, Nathaniel J E, Leff A C, et al. The role of grain size in He bubble formation: Implications for swelling resistance [J]. J. Nucl. Mater., 2017, 484: 236
48 Sun C, Zheng S, Wei C C, et al. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments [J]. Sci. Rep., 2015, 5: 7801
49 Samaras M, Derlet P M, Van Swygenhoven H, et al. Radiation damage near grain boundaries [J]. Philos. Mag., 2003, 83: 3599
50 Xu J, Liu J B, Li S N, et al. Self-healing properties of nanocrystalline materials: A first-principles analysis of the role of grain boundaries [J]. Phys. Chem. Chem. Phys., 2016, 18: 17930
51 Sun C, Song M, Yu K Y, et al. In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni [J]. Metall. Mater. Trans., 2013, 44A: 1966
52 Liu L L, Tang Z, Xiao W, et al. Self-healing mechanism of irradiation defects near Σ=11(113) grain boundary in copper [J]. Mater. Lett., 2013, 109: 221
53 Di C, Wang J, Chen T Y, et al. Defect annihilation at grain boundaries in alpha-Fe [J]. Sci. Rep., 2013, 3: 1450
54 Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50: 413
55 Koch C C, Scattergood R O, Darling K A, et al. Stabilization of nanocrystalline grain sizes by solute additions [J]. J. Mater. Sci., 2008, 43: 7264
56 Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
57 Darling K A, Kecskes L J, Atwater M, et al. Thermal stability of nanocrystalline nickel with yttrium additions [J]. J. Mater. Res., 2013, 28: 1813
58 Du C C, Jin S B, Fang Y, et al. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance [J]. Nat. Commun., 2018, 9: 5389
59 Fang Y, Ge W, Yang T F, et al. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures [J]. Nanotechnology, 2018, 29: 494001
60 El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
61 Barnes R S, Redding G B, Cottrbll A H. The observation of vacancy sources in metals [J]. Philos. Mag., 1958, 3A: 97
62 Chen D, Li N, Yuryev D, et al. Imaging the in-plane distribution of helium precipitates at a Cu/V interface [J]. Mater. Res. Lett., 2017, 5: 335
63 Misra A, Demkowicz M J, Zhang X, et al. The radiation damage tolerance of ultra-high strength nanolayered composites [J]. JOM, 2007, 59(9): 62
64 Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
65 Shao S, Wang J, Misra A, et al. Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces [J]. Sci. Rep., 2013, 3: 2448
66 Vattré A J, Demkowicz M J. Determining the Burgers vectors and elastic strain energies of interface dislocation arrays using anisotropic elasticity theory [J]. Acta Mater., 2013, 61: 5172
67 Hirth J P, Pond R C, Hoagland R G, et al. Interface defects, reference spaces and the Frank-Bilby equation [J]. Prog. Mater. Sci., 2013, 58: 749
68 Vattré A, Jourdan T, Ding H, et al. Non-random walk diffusion enhances the sink strength of semicoherent interfaces [J]. Nat. Commun., 2016, 7: 10424
69 Reed D J. A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects [J]. Rad. Eff., 1977, 31: 129
70 McPhie M G, Capolungo L, Dunn A Y, et al. Interfacial trapping mechanism of He in Cu-Nb multilayer materials [J]. J. Nucl. Mater., 2013, 437: 222
71 Höchbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites [J]. J. Appl. Phys., 2005, 98: 123516
72 Lach T G, Ekiz E H, Averback R S, et al. Role of interfaces on the trapping of He in 2D and 3D Cu-Nb nanocomposites [J]. J. Nucl. Mater., 2015, 466: 36
73 Demkowicz M J, Bhattacharyya D, Usov I, et al. The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces [J]. Appl. Phys. Lett., 2010, 97: 161903
74 Demkowicz M J, Misra A, Caro A. The role of interface structure in controlling high helium concentrations [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 101
75 Bollmann W. O-lattice calculation of an F.C.C.-B.C.C. interface [J]. Phys. Status Solidi, 1974, 21A: 543
76 Yuryev D V, Demkowicz M J. Computational design of solid-state interfaces using O-lattice theory: An application to mitigating helium-induced damage [J]. Appl. Phys. Lett., 2014, 105: 221601
77 Yang L X, Zheng S J, Zhou Y T, et al. Effects of He radiation on cavity distribution and hardness of bulk nanolayered Cu-Nb composites [J]. J. Nucl. Mater., 2017, 487: 311
78 Chen D, Li N, Yuryev D, et al. Self-organization of helium precipitates into elongated channels within metal nanolayers [J]. Sci. Adv., 2017, 3: eaao2710
79 So K P, Chen D, Kushima A, et al. Dispersion of carbon nanotubes in aluminum improves radiation resistance [J]. Nano Energy, 2016, 22: 319
80 Wang X S, Li Q Q, Xie J, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates [J]. Nano Lett., 2009, 9: 3137
81 González R I, Valencia F, Mella J, et al. Metal-nanotube composites as radiation resistant materials [J]. Appl. Phys. Lett., 2016, 109: 033108
82 Si S Y, Li W Q, Zhao X L, et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene [J]. Adv. Mater., 2017, 29: 1604623
83 Kim Y, Baek J, Kim S, et al. Radiation resistant vanadium-graphene nanolayered composite [J]. Sci. Rep., 2016, 6: 24785
84 Huang H, Tang X B, Chen F D, et al. Radiation damage resistance and interface stability of copper-graphene nanolayered composite [J]. J. Nucl. Mater., 2015, 460: 16
85 Yang T L, Yang L, Liu H, et al. Ab initio study of stability and migration of point defects in copper-graphene layered composite [J]. J. Alloys Compd., 2017, 692: 49
86 Huang H, Tang X B, Chen F D, et al. Graphene damage effects on radiation-resistance and configuration of copper-graphene nanocomposite under irradiation: A molecular dynamics study [J]. Sci. Rep., 2016, 6: 39391
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[4] 黄远 孔德月 何芳 王玉林 刘文西. 辐照损伤合金化制备Mo/Ag层状复合材料[J]. 金属学报, 2012, 48(10): 1253-1259.
[5] 吕铮. 核反应堆压力容器的辐照脆化与延寿评估[J]. 金属学报, 2011, 47(7): 777-783.
[6] 贺新福 杨鹏 杨文. Fe-Cu合金基体损伤的分子动力学模拟研究[J]. 金属学报, 2011, 47(7): 954-957.
[7] 韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究------进展与趋势[J]. 金属学报, 2011, 47(7): 769-776.
[8] 孙超 谭军 应诗浩 李聪 彭倩 赵素琼. 辐照后N18锆合金氢致延迟开裂临界温度预测[J]. 金属学报, 2010, 46(7): 805-809.
[9] 胡本芙; 木下博嗣; 坂口纪史; 高桥平七郎 . Fe-Cr-Mn钢时效析出碳化物辐照损伤行为[J]. 金属学报, 2006, 42(3): 234-238 .
[10] 胡本芙; 高桥平七郎 . He对低活性Fe-Cr-Mn(W, V)合金辐照产生点缺陷行为的影响[J]. 金属学报, 2004, 40(9): 955-961 .
[11] 胡苯芙; 木下博嗣; 高桥平七郎 . Fe-Cr-Mn(W, V)合金焊接热影响区的辐照损伤及诱发的晶界元素偏析[J]. 金属学报, 1999, 35(10): 1090-1094 .
[12] 孙继光;陈朝庆;张希顺;田耘;单秉权;潘庆春. ODS铁素体合金抗辐照损伤性能[J]. 金属学报, 1998, 34(11): 1210-1216.
[13] 万发荣;黄学军;褚武扬;肖纪美. 铁素体钢中氢对材料辐照肿胀行为的影响[J]. 金属学报, 1995, 31(2): 69-73.
[14] 万发荣;黄学军;孔峰;褚武扬;肖纪美;高桥平七郎;北京科技大学;日本北海道大学. 氧化物弥散强化铁素体钢的电子辐照行为[J]. 金属学报, 1994, 30(22): 448-452.
[15] 万发荣;肖纪美;袁逸. 利用电子束辐照方法测定空位迁移能[J]. 金属学报, 1990, 26(2): 74-78.