Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1067-1076    DOI: 10.11900/0412.1961.2019.00148
  综述 本期目录 | 过刊浏览 |
我国典型金属间化合物基高温结构材料的研究进展与应用
宫声凯1(),尚勇1,张继2,郭喜平3,林均品4,赵希宏5
1. 北京航空航天大学材料科学与工程学院 北京 100191
2. 钢铁研究总院高温材料研究所 北京 100081
3. 西北工业大学凝固技术国家重点实验室 西安 710072
4. 北京科技大学新金属材料国家重点实验室 北京 100083
5. 中国航发北京航空材料研究院 北京 100095
Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China
GONG Shengkai1(),SHANG Yong1,ZHANG Ji2,GUO Xiping3,LIN Junpin4,ZHAO Xihong5
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. High Temperature Materials Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
4. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
5. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. Acta Metall Sin, 2019, 55(9): 1067-1076.

全文: PDF(17147 KB)   HTML
摘要: 

金属间化合物是由2种或2种以上金属元素或金属元素与类金属元素按照一定原子比组成的化合物。共价键、金属键共存的特点使得金属间化合物在较长范围内存在长程有序的超晶格结构。在高温下,金属间化合物的位错迁移率相对降低,从而具有较高的高温强度。典型的结构金属间化合物如Ti-Al、Ni-Al、Nb-Si有着优异的高温强度和较低的密度,非常适合应用于航空航天器的高温结构件中。但此类材料也存在室温断裂韧性较低、高温抗氧化性能差等问题,使其在应用上受到限制,也成为该领域研究的难点与重点。本文着重介绍近年来我国Ti-Al、Ni-Al、Nb-Si系结构金属间化合物基合金在高温强化、增韧、抗氧化、制备技术等方面的研究进展与应用现状。

关键词 金属间化合物耐高温性能力学性能合金化设计抗氧化性    
Abstract

Intermetallics is composed of two or more metals or of a metal and a nonmetal. The coexistence of covalent and metal bond makes the intermetallic compound have long-term ordered superlattice structure, which greatly reduces dislocation mobility at high temperature, thus exhibiting good high-temperature strength. Typical structural intermetallics such as Ti-Al, Ni-Al and Nb-Si, have the advantages of excellent high-temperature strength and low density, which are very suitable for high-temperature structural parts of aerospace. However, the application of such materials is limited by low fracture toughness at room temperature and poor oxidation resistance at high temperature, which attracts more and more attentions and brings challenges in this field. In this paper, the research and application status in high-temperature strengthening, toughening, oxidation resistance and preparation technology of Ti-Al, Ni-Al, Nb-Si intermetallics-based alloys are introduced.

Key wordsintermetallics    high-temperature resistance    mechanical property    alloying design    oxidation resistance
收稿日期: 2019-05-07     
ZTFLH:  TG113.1  
基金资助:国家自然科学基金项目(51671015、51771007);国家科技重大专项项目(2017-VI-0011-0083、2017-VI-0012-0084)
作者简介: 宫声凯,男,1956年生,教授,博士
图1  通过控制轧制温度获得的高铌TiAl合金双态组织及近片层组织
图2  铸造高铌TiAl合金的XRD谱及Larson-Miller蠕变曲线对比
图3  8镦8拔和5镦5拔Ti-22Al-25Nb合金棒材显微组织(直径300 mm)
图4  IC21合金的微观组织
图5  IC21合金的1100 ℃循环氧化增重曲线及[111]取向的1100 ℃、137 MPa蠕变曲线
ElementConstituent phaseOxidation resistanceMechanical property
Ti, Hf, ZrPromoting theImproving the oxidationHf and Zr enhance the fracture toughness and high
formation ofresistancetemperature strength, and Ti also enhances the fracture
γ-Nb5Si3toughness, but excessive Ti content degrades the high-
temperature creep resistance of the alloys
Mo, W, AlImproving theW and Al improve theMo enhances the fracture toughness and high temperature
stability of β-Nb5Si3oxidation resistance,strength; W improves the high temperature strength; Al
while Mo degrades ithas negative impact on mechanical properties
CrPromoting theImproving the oxidationDeteriorating the fracture toughness of the alloys
formation ofresistance
Cr2Nb
Rare earth-Improving the oxidationImproving the fracture toughness of the alloys
resistance
表1  合金化元素对Nb-Si基合金相组成和性能的影响[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]
图6  Nb-15Si-22Ti-5Cr-3Al-3Hf合金在2050 ℃和200 μm/s抽拉速率下有坩埚整体定向凝固纵截面和横截面的微观组织
[1] ChenG L, ZhangW J, LiuZ C , et al. Microstructures and properties of high-Nb containing TiAl-base alloys [A]. Proceedings of Gamma Titanium Aluminides [C]. Warrendale, PA: TMS, 1999: 371
[2] LiuZ C, LinJ P, LiS J , et al. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys [J]. Intermetallics, 2002, 10: 653
[3] ChenG L. R&D status and prospect on the ordered structural intermetallics [J]. Mater. Rev., 2000, 14(9): 1
[3] 陈国良. 金属间化合物结构材料研究现状与发展 [J]. 材料导报, 2000, 14(9): 1)
[4] JarvisD J, VossD. IMPRESS integrated project—An overview paper [J]. Mater. Sci. Eng., 2005, A413-414: 583
[5] WuX H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
[6] VoiceW E, HendersonM, SheltonE F J , et al. Gamma titanium aluminide, TNB [J]. Intermetallics, 2005, 13: 959
[7] BraunR, LaskaN, KnittelS , et al. Effect of intermetallic coatings on the tensile properties of a γ-TiAl based TNM alloy [J]. Mater. Sci. Eng., 2017, A699: 118
[8] ImaevV M, ImaevR M, OlenevaT I , et al. Microstructure and mechanical properties of the intermetallic alloy Ti-45Al-6(Nb, Mo)-0.2B [J]. Phys. Met. Metallogr., 2008, 106: 641
[9] LiS J, LiuZ C, LinJ P , et al. The creep properties of high niobium containing TiAl alloy [J]. Rare Met. Mater. Eng., 2002, 31: 31
[9] 李书江, 刘自成, 林均品等. 一种高铌TiAl合金的蠕变性能 [J]. 稀有金属材料与工程, 2002, 31: 31
[10] XuL H, XuX J, LinJ P , et al. Effect of canned forging on microstructure of high Nb-containing TiAl alloy [J]. J. Mater. Eng., 2004, (8): 21
[10] 徐丽华, 徐向俊, 林均品等. 包套锻造对高Nb-TiAl基合金组织的影响 [J]. 材料工程, 2004, (8): 21)
[11] XuL H, XuX J, WangY L , et al. Effect of heat treatment on the microstructure of two-step forging for high Nb containing TiAl alloy [J]. J. Aeronaut. Mater., 2005, 25(4): 16
[11] 徐丽华, 徐向俊, 王艳丽等. 热处理对二次锻造高Nb-TiAl基合金组织的影响 [J]. 航空材料学报, 2005, 25(4): 16)
[12] LiuZ C. Research on the micro-alloying and the creep properties of high niobium containing TiAl alloys [D]. Beijing: University of Science and Technology Beijing, 2000
[12] 刘自成. 高铌TiAl合金成分及组织优化的研究 [D]. 北京: 北京科技大学, 2000
[13] WuX H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
[14] ImaevV M, ImaevR M, OlenevaT I , et al. Microstructure and mechanical properties of the intermetallic alloy Ti-45Al-6(Nb, Mo)-0.2B [J]. Phys. Met. Metallogr., 2008, 106: 641
[15] ImayevV, ImayevR, KhismatullinT , et al. Superplastic behavior of Ti-43Al-7(Nb, Mo)-0.2B alloy in the cast+heat-treated condition [J]. Scr. Mater., 2007, 57: 193
[16] LiH Z, ZhangJ. High temperature strength and ambient ductility dependences on Al contents of high Nb containing TiAl alloys [J]. Acta Metall. Sin., 2013, 49: 1423
[16] 李海昭, 张 继. Al含量对高Nb铸造TiAl合金高温强度和室温塑性的影响 [J]. 金属学报, 2013, 49: 1423
[17] LiH Z, ZhangJ. High Nb content TiAl alloys specified to cast process [A]. Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology [C]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2014: 93
[18] LeyensC, PetersM. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley-VCH, John Wiley, 2003: 333
[19] ZhangJ W, LiS Q, LiangX B , et al. Research and application of Ti3Al and Ti2AlNb based alloys [J]. Chin. J. Nonferrous Met., 2010, 20: 336
[19] 张建伟, 李世琼, 梁晓波等. Ti3Al和Ti2AlNb基合金的研究与应用 [J]. 中国有色金属学报, 2010, 20: 336
[20] KimY W. Gamma titanium aluminides: Their status and future [J]. JOM, 1995, 47(7): 39
[21] CaoC X, MaJ M, YanM G. The development of Ti3Al intermetallic alloys [J]. J. Mater. Eng., 1991, (2): 32
[21] 曹春晓, 马济民, 颜鸣皋. Ti3Al基合金的进展 [J]. 材料工程, 1991, (2): 32)
[22] TianW, ZhongY, LiangX B , et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49
[22] 田 伟, 钟 燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49)
[23] WangJ X. Research status and progress of Ni-Al based alloys as high temperature structural materials [J]. Chin. J. Rare Met., 2007, 31: 83
[23] 王敬欣. 镍铝基高温结构材料的研究进展 [J]. 稀有金属, 2007, 31: 83
[24] AokiK, IzumiO. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition [J]. J. Japan Inst. Met., 1979, 43: 1190
[25] LiH, LiF L, LiS S , et al. Influence of ageing treatments on stress rupture properties of Ni3Al-base single-crystal alloy IC21 at 850 ℃ [J]. Mater. Sci. Forum, 2013, 747-748: 659
[26] DaiP C, PengH, PeiY L , et al. Improvement in oxidation resistance of Ni3Al based single crystal superalloy IC32 by NiAlHfSi coating [J]. Mater. Sci. Forum, 2013, 747-748: 604
[27] RuY, AiC, LiS S , et al. Two-phase microstructural evolution at high temperatures for γ'-richen single crystal superalloys [J]. Mater. Res. Innovations, 2015, 19: S214
[28] LiW, ZhangZ G, ZhangH , et al. Influence of aging heat treatment on microstructure and hardness of single crystal Ni3Al-base superalloy IC21 [J]. Procedia Eng., 2012, 27: 1081
[29] LiangY F, LiS S, AiC , et al. Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 112
[30] CuiD L, XieX Y, LiS S , et al. Heat treatment of a Ni3Al-based single crystal alloy IC32 [J]. Mater. Sci. Forum, 2013, 747-748: 665
[31] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (Book 2) [M]. Beijing: China Quality and Standards Publishing, 2012: 727
[31] (中国金属学会高温材料分会. 中国高温合金手册(下卷) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 727)
[32] RuY, ZhangH, PeiY L , et al. Improved 1200 ℃ stress rupture property of single crystal superalloys by γ'-forming elements addition [J]. Scr. Mater., 2018, 147: 21
[33] ZhangH, LiangY F, RuY , et al. Effect of thermal exposure on the stress-rupture life and microstructure of a low Re-containing single crystal alloy [J]. Prog. Nat. Sci.: Mater. Int., 2015, 25: 84
[34] BaiJ Y. Effects of Ce and Dy on oxidation resistance of the IC21 superalloy [D]. Beijing: Beihang University, 2017
[34] 白洁莹. 稀土元素Ce与Dy对IC21单晶合金抗氧化性能的影响 [D]. 北京: 北京航空航天大学, 2017
[35] FengX J. Effect of trace Ce on high-temperature oxidation behavior of a Al-Si coated Ni-based single crystal superalloy [D]. Beijing: Beihang University, 2018
[35] 逄小娟. 微量Ce对Ni基单晶高温合金Al-Si涂层高温氧化性能的影响 [D]. 北京: 北京航空航天大学, 2018
[36] SikkaV K, MavityJ T, AndersonK. Processing of nickel aluminides and their industrial applications [J]. Mater. Sci. Eng., 1992, A153: 712
[37] SikkaV K, SantellaM L, OrthJ E. Processing and operating experience of Ni3Al-based intermetallic alloy IC-221M [J]. Mater. Sci. Eng., 1997, A239-240: 564
[38] SikkaV K, DeeviS C, ViswanathanS , et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermeta-llics, 2000, 8: 1329
[39] StoloffN S, LiuC T, DeeviS C. Emerging applications of intermetallics [J]. Intermetallics, 2000, 8: 1313
[40] TanY N, ZhaoX H, GuiZ L. Development and application of casting Ni3Al-based alloys (ВКНА series) in Russia [J]. Aviat. Maint. Eng., 1997, (5): 6
[40] 谭永宁, 赵希宏, 桂中楼. 俄罗斯ВКНА系列Ni3Al基合金的发展和应用 [J]. 航空工程与维修, 1997, (5): 6)
[41] FengD, LiS P, LuoH L , et al. Microstructure and properties of modified cast Ni3Al-Base MX246 alloys [J]. Acta Metall. Sin., 2002, 38: 1181
[41] 冯 涤, 李尚平, 骆合力等. 改性铸造Ni3Al基合金MX246组织与性能研究 [J]. 金属学报, 2002, 38: 1181
[42] WangL P, LuoH L, LiS P , et al. Effect of heat-treatment on microstructure and stress rupture of MX246A [J]. Foundry, 2007, 56: 395
[42] 汪龙平, 骆合力, 李尚平等. 热处理对MX246A合金显微组织和持久性能的影响 [J]. 铸造, 2007, 56: 395
[43] GuoH S, GuoX P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scr. Mater., 2011, 64: 637
[44] QiaoY Q, GuoX P, ZengY X. Study of the effects of Zr addition on the microstructure and properties of Nb-Ti-Si based ultrahigh temperature alloys [J]. Intermetallics, 2017, 88: 19
[45] ZhangS, GuoX P. Alloying effects on the microstructure and properties of Nb-Si based ultrahigh temperature alloys [J]. Intermeta-llics, 2016, 70: 33
[46] ZhouY. Effects of Ti, Al additions on microstructure and properties of Nb-Si based ultrahigh temperature alloys [D]. Xi'an: Northwestern Polytechnical University, 2019
[46] 周 央. Ti, Al含量对Nb-Si基超高温合金组织及性能的影响 [D]. 西安: 西北工业大学, 2019
[47] ChumarevV M, Leont'evL Y, UdoevaL Y , et al. Effect of boron and yttrium on the phase composition and the microstructure of natural Nb-Si composites [J]. Russ. Metall., 2014, 2014: 688
[48] BewlayB P, JacksonM R, LipsittH A. The Nb-Ti-Si ternary phase diagram: evaluation of liquid- solid phase equilibria in Nb-and Ti-rich alloys [J]. J. Phase Equilib., 1997, 18: 264
[49] ZhaoJ C, JacksonM R, PelusoL A. Determination of the Nb-Cr-Si phase diagram using diffusion multiples [J]. Acta Mater., 2003, 51: 6395
[50] ZhaoJ C, BewlayB P, JacksonM R. Determination of Nb-Hf-Si phase equilibria [J]. Intermetallics, 2001, 9: 681
[51] MaC L, LiJ G, TanY , et al. Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb-Mo-Si and Nb-W-Si systems [J]. Mater. Sci. Eng., 2004, A386: 375
[52] SunZ P, GuoX P, ZhangC. Liquid-solid phase equilibria in Nb-rich corner of the Nb-Ti-Si-B system [J]. J. Alloys Compd., 2012, 522: 149
[53] ChanK S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites [J]. Mater. Sci. Eng., 2002, A329-331: 513
[54] ZhangS, GuoX P. Effects of Cr and Hf additions on the microstructure and properties of Nb silicide based ultrahigh temperature alloys [J]. Mater. Sci. Eng., 2015, A638: 121
[55] ShaoG. Thermodynamic assessment of the Nb-Si-Al system [J]. Intermetallics, 2004, 12: 655
[56] SunZ P, YangY, GuoX P , et al. Thermodynamic modeling of the Nb-rich corner in the Nb-Si-B system [J]. Intermetallics, 2011, 19: 26
[57] SunZ P, GuoX P, ZhangC. Thermodynamic modeling of the Nb-rich corner in the Nb-Si-Sn system [J]. Calphad, 2012, 36: 82
[58] YangY, BewlayB P, ChangY A. Liquid-solid phase equilibria in metal-rich Nb-Ti-Hf-Si alloys [J]. J. Phase Equilib. Diff., 2007, 28: 107
[59] ShengL Y. Microstructure evolution and mechanical properties of a directionally solidified Nb-Ti-Si-Cr-Al-Hf-Dy alloy [C]. MATEC Web Conf., 2016, 67: 03007
[60] GuoB H, GuoX P. Effect of withdrawal rates on microstructures and room temperature fracture toughness in a directionally solidified Nb-Ti-Cr-Si based alloy [J]. Mater. Sci. Eng., 2014, A617: 39
[61] BewlayB P, LewandowksiJ J, JacksonM R. Refractory metal-intermetallic in-situ composites for aircraft engines [J]. JOM, 1997, 49(8): 44
[62] GuanP, GuoX P, DingX , et al. Directionally solidified microstructure of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2004, 17: 450
[63] HuangQ, GuoX P, KangY W , et al. Microstructures and mechanical properties of directionally solidified multi-element Nb-Si alloy [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 146
[64] TianY X, GuoJ T, ChengG M , et al. Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy [J]. Mater. Des., 2009, 30: 2274
[65] KimW Y, TanakaH, KasamaA , et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites [J]. Intermetallics, 2001, 9: 827
[66] ZhangP. Microstructures and oxidation resistance of Si-Al-Y diffusion coatings on Nb-Si based alloys [D]. Xi'an: Northwestern Polytechnical University, 2014
[66] 张 平. Nb-Si基合金Si-Al-Y扩散渗层的组织及抗氧化性能 [D]. 西安: 西北工业大学, 2014
[67] SunJ, LiT, ZhangG P , et al. Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range [J]. J. Alloys Compd., 2019, 790: 1014
[68] WangW, ZhouC G. Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy [J]. Corros. Sci., 2016, 110: 114
[69] MajumdarS, SenguptaP, KaleG B , et al. Development of multilayer oxidation resistant coatings on niobium and tantalum [J]. Surf. Coat. Technol., 2006, 200: 3713
[70] CockeramB V. Growth and oxidation resistance of boron-modified and germanium-doped silicide diffusion coatings formed by the halide-activated pack cementation method [J]. Surf. Coat. Technol., 1995, 76-77: 20
[71] HeJ H, GuoX P, QiaoY Q. Effect of Zr content on the structure and oxidation resistance of silicide coatings prepared by pack cementation technique [J]. Corros. Sci., 2019, 147: 152
[72] YaoD Z, YangJ Y, GongW Y , et al. Interdiffusion behavior between Nb and MoSi2 intermetallic compound [J]. Mater. Sci. Eng., 2010, A527: 6787
[73] GaoY, GuoX P, QiaoY Q , et al. Electrodeposition of Mo/Re duplex layer and preparation of MoSi2/ReSi2/NbSi2 compound coating on Nb-Ti-Si based alloy [J]. Corros. Sci., 2019, 153: 283
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.