Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 801-810    DOI: 10.11900/0412.1961.2018.00562
  本期目录 | 过刊浏览 |
X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征
李亚东1,李强2,唐晓1,李焰1()
1. 中国石油大学(华东)材料科学与工程学院 青岛 266580
2. 中国石油大学(华东)储运与建筑工程学院 青岛 266580
Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints
Yadong LI1,Qiang LI2,Xiao TANG1,Yan LI1()
1. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2. College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
Yadong LI, Qiang LI, Xiao TANG, Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. Acta Metall Sin, 2019, 55(6): 801-810.

全文: PDF(10490 KB)   HTML
摘要: 

利用离散、热模拟处理和模块化重构的微电极阵列对X80管线钢焊接接头进行模拟重构,并联用经典电化学测试技术和微电极阵列测试技术研究了X80钢模拟焊接接头及孤立分区在CO2饱和的NACE溶液中的电偶腐蚀行为。结果表明,在NACE溶液中,孤立的细晶区开路电位最正,腐蚀倾向小,而焊缝的电位最负,腐蚀倾向大;各部分的腐蚀电流密度大小关系为:部分相变区>细晶区>粗晶区>母材>焊缝;模拟X80钢焊接接头组织中,粒状贝氏体与铁素体的混合组织的开路电位最正,极化电阻最小。当各组成部分耦合后,模拟焊接接头中的焊缝和粗晶区作为主要阳极,腐蚀加速;细晶区和部分相变区作为主要阴极,腐蚀减缓;邻近热影响区的母材微电极以阳极性电流为主,远离热影响区的母材微电极以阴极性电流为主。提出电偶腐蚀强度因子用于表征电偶腐蚀强度。孤立的焊缝区的自腐蚀电流密度虽最小,但在电偶腐蚀的加速作用下,焊缝与粗晶区作为模拟焊接接头的薄弱环节,首先因腐蚀而失效。

关键词 管线钢焊接接头电偶腐蚀阵列电极模拟重构    
Abstract

Welding is widely used for pipeline connection. Composition, microstructures and properties of the welded joints are highly heterogeneous and the resultant corrosion such as galvanic corrosion between different parts is widely present and influence the long-time service and safety. In this sense, the fundamental research in the electrochemical behavior of such joint parts is required. Electrochemical corrosion behavior of simulated X80 steel welded joint, accurately modeled by wire beam electrode (WBE) technique, was investigated by classical electrochemical techniques and microelectrode array (MEA) technique. A new index, namely the galvanic corrosion intensity factor, was proposed and verified to succeed in characterizing the degree of galvanic corrosion. Results showed that microstructure of granular bainite mixed with ferrite showed the highest positive open circuit potential and lowest polarization resistance. Furthermore, the corrosion tendency of the isolated electrodes that constituted the X80 steel welded joint was found to increase in the following order: fine grain heat affected zone (FGHAZ) < intercritical heat affected zone (ICHAZ) < base metal (BM) < coarse grain heat affected zone (CGHAZ) < weld metal (WM). Due to the difference in potential and the polarization characteristics, the WM displayed the highest polarization resistance but the most positive current density. The CGHAZ possessed a lower polarization resistance and a higher positive current density. In comparison, the FGHAZ and ICHAZ performed a lower polarization resistance but higher negative current densities. The WM and CGHAZ acted as the main anode, while the FGHAZ and ICHAZ acted as the main cathode and the galvanic current polarity of some BM electrodes changed with time during the immersion test. The intensity of galvanic corrosion of simulated X80 steel welded joint plateaued with immersion time. The results revealed that WM and CGHAZ were the weak links in the simulated X80 pipeline steel welded joints during its long-term service.

Key wordspipeline steel    welded joint    galvanic corrosion    microelectrode array    reconstruction
收稿日期: 2018-12-24     
ZTFLH:  TG172  
基金资助:国家自然科学基金项目(No.41676071);中央高校基本科研业务费专项资金项目(No.18CX05021A)
作者简介: 李亚东,男,1991年生,博士生
图1  焊接接头的模拟重构示意图
图2  X80钢焊接接头各部分的显微组织
图3  X80管线钢焊接接头各部分的开路电位
图4  X80钢焊接接头各部分在CO2饱和的NACE溶液中的EIS
图5  EIS的等效电路模型

Region

Rs

Ω·cm2

Y0

S·sn·cm-2

n

Rpore

Ω·cm2

Rp

Ω·cm2

Cdl

μF·cm-2

L

H·cm-2

RL

Ω·cm2

BM4.11.5×10-30.67235319482110
ICHAZ0.72.3×10-30.6917283244970
FGHAZ1.01.7×10-30.6722382193473
CGHAZ1.01.4×10-30.68183521180280
WM2.78×10-40.73244720331267
表1  X80钢焊接接头各部分在CO2饱和的NACE溶液中的EIS拟合结果
图6  不同浸泡时间下X80钢焊接接头各部分的极化电阻
图7  X80钢焊接接头各部分的极化曲线
图8  X80钢焊接接头各部分在不同浸泡时间下的极化曲线

Time

h

Region

ba

mV·dec-1

bc

mV·dec-1

Ecorr

V

icorr

mA·cm-2

0.5BM72-181-0.6140.2345
ICHAZ77-188-0.6040.3421
FGHAZ86-183-0.6090.2921
CGHAZ66-177-0.6170.2913
WM64-174-0.6180.2195
2BM100-188-0.6380.1457
ICHAZ99-178-0.6260.2176
FGHAZ90-171-0.6210.2261
CGHAZ91-172-0.6230.2231
WM104-187-0.6470.1281
4BM106-189-0.6400.1423
ICHAZ108-190-0.6340.2107
FGHAZ101-187-0.6210.1954
CGHAZ109-189-0.6360.2403
WM114-181-0.6560.1269
6BM110-187-0.6430.1404
ICHAZ117-183-0.6380.2164
FGHAZ105-202-0.6360.2207
CGHAZ114-196-0.6420.2505
WM115-180-0.6550.1117
表2  由动电位极化曲线拟合的电化学参数
图9  不同耦合时间下模拟焊接接头的电位分布
图10  不同耦合时间下模拟焊接接头的电偶电流密度分布
图11  不同耦合时间下主要阳极与次要阳极的电偶效应
图12  g与ig,max随时间的变化
[1] Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones [J]. Corros. Sci., 2011, 53: 4026
[2] Zhao W, Zou Y, Matsuda K, et al. Corrosion behavior of reheated CGHAZ of X80 pipeline steel in H2S-containing environments [J]. Mater. Des., 2016, 99: 44
[3] Ballesteros A F, Gomes J A P, Bott I S. Corrosion evaluation of SAW welded API 5L X-80 joints in H2S-containing solution [J]. Mater. Res., 2015, 18: 417
[4] Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution [J]. Corros. Sci., 2013, 70: 170
[5] Ma G, Zuo X R, Hong L, et al. Investigation of corrosion behavior of welded joint of X70 pipeline steel for deep sea [J]. Acta Metall. Sin., 2018, 54: 527
[5] (马 歌, 左秀荣, 洪 良等. 深海用X70管线钢焊接接头腐蚀行为研究 [J]. 金属学报, 2018, 54: 527)
[6] BordbarS, Alizadeh M, Hashemi S H. Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel [J]. Mater. Des., 2013, 45: 597
[7] El-Sherik A M. Trends in Oil and Gas Corrosion Research and Technologies [M]. Boston: Woodhead Publishing, 2017: 249
[8] ZhuJ Y, XuL N, FengZ C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
[9] WangL W, LiuZ Y, CuiZ Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
[10] SunQ L, CaoB, WuY S. Electrochemical behavior of various micro-areas on the welded joint of Q235 steel [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 41
[10] (孙齐磊, 曹 备, 吴荫顺. Q235管线钢焊接接头微区电化学行为 [J]. 北京科技大学学报, 2009, 31: 41)
[11] FushimiK, NaganumaA, AzumiK, et al. Current distribution during galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution [J]. Corros. Sci., 2008, 50: 903
[12] AlawadhiK, RobinsonM J. Preferential weld corrosion of X65 pipeline steel in flowing brines containing carbon dioxide [J]. Corros. Eng. Sci. Technol., 2011, 46: 318
[13] EliyanF F, AlfantaziA. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃—An electrochemical evaluation [J]. Corros. Sci., 2013, 74: 297
[14] MoeinifarS, KokabiA H, HosseiniH R M. Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel [J]. J. Mater. Process. Technol., 2011, 211: 368
[15] LiY, YangR. Modularized array electrode of precision simulate welded joint and manufacturing method thereof [P]. Chin Pat, CN201310339519.8, 2013
[15] (李 焰, 杨 瑞. 精确模拟焊接接头的模块化阵列电极及其制备方法 [P]. 中国专利, CN201310339519.8, 2013)
[16] LiY, LiuY, ZhangD L. Multi-channel galvanic corrosion test system and method based on micro electrode array [P]. Chin Pat, CN201210477941.5, 2013
[16] (李 焰, 刘 玉, 张大磊. 基于微电极阵列的多通道电偶腐蚀测试系统及测试方法 [P]. 中国专利, CN201210477941.5, 2013)
[17] ZhangD L, WangW, LiY. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion [J]. Corros. Sci., 2010, 52: 1277
[18] JuH, YangY F, LiuY F, et al. Mapping the galvanic corrosion of three metals coupled with a wire beam electrode: The influence of temperature and relative geometrical position [J]. Materials, 2018, 11: 357
[19] JuH, DuanJ Z, YangY F, et al. Mapping the galvanic corrosion of three coupled metal alloys using coupled multielectrode array: Influence of chloride ion concentration [J]. Materials, 2018, 11: 634
[20] ChenC F, LuM X, ZhaoG X, et al. Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 848
[20] (陈长风, 路民旭, 赵国仙等. 温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响 [J]. 金属学报, 2003, 39: 848)
[21] Das Chagas AlmeidaT, BandeiraM C E, MoreiraR M, et al. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
[22] TranT, BrownB, NesicS, et al. Investigation of the mechanism for acetic acid corrosion of mild steel [A]. Proceedings of the NACE International Corrosion Conference [C]. Orlando: NACE International, 2013, 12
[23] ZhangG A, ChengY F. Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid [J]. Corros. Sci., 2009, 51: 1589
[24] LiW, BrownB, YoungD, et al. Investigation of pseudo-passivation of mild steel in CO2 corrosion [J]. Corrosion, 2013, 70: 294
[25] NazariM H, AllahkaramS R. The effect of acetic acid on the CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 4290
[26] LiuD, ChenZ Y, GuoX P. The effect of acetic acid and acetate on CO2 corrosion of carbon steel [J]. Anti-Corros. Methods Mater., 2008, 55: 130
[27] JiaZ J, LiX G, DuC W, et al. Effect of acetic acid on CO2 corrosion of 3Cr low-alloy steel [J]. Mater. Chem. Phys., 2012, 132: 258
[28] MansfeldF. The relationship between galvanic current and dissolution rates [J]. Corrosion, 1973, 29: 403
[29] TanY J, AungN N, LiuT. Evaluating localised corrosion intensity using the wire beam electrode [J]. Corros. Sci., 2012, 63: 379
[30] LuY X, JingH Y, HanY D, et al. Recommend design of filler metal to minimize carbon steel weld metal preferential corrosion in CO2-saturated oilfield produced water [J]. Appl. Surf. Sci., 2016, 389: 609
[31] PaolinelliL D, PérezT, SimisonS N. The influence of Cr content on the efficiency of inhibitor of C-Mn steel CO2 corrosion [A]. Proceedings of NACE International Corrosion Conference [C]. San Diego, CA: NACE International, 2006, 369
[32] JinT Y, ChengY F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
[33] TangX, ChengY F. Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition [J]. Electrochim. Acta, 2009, 54: 1499
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[4] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[5] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[6] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[9] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[10] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[11] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[12] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[13] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.