|
|
蛋白质吸附对医用金属材料体外腐蚀行为的影响 |
王鲁宁1,2( ), 刘丽君1, 岩雨1,3, 杨坤1, 陆黎立1 |
1.北京科技大学 材料科学与工程学院 北京材料基因工程高精尖创新中心 北京 100083 2.北京科技大学 新金属材料国家重点实验室 北京 100083 3.北京科技大学 新材料技术研究院 北京 100083 |
|
Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals |
WANG Luning1,2( ), LIU Lijun1, YAN Yu1,3, YANG Kun1, LU Lili1 |
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
Luning WANG,
Lijun LIU,
Yu YAN,
Kun YANG,
Lili LU.
Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. Acta Metall Sin, 2021, 57(1): 1-15.
1 |
Talha M, Ma Y C, Kumar P, et al. Role of protein adsorption in the bio corrosion of metallic implants—A review [J]. Colloids Surf., 2019, 176B: 494
|
2 |
Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater., 2015, 13: 16
|
3 |
Marco I, Myrissa A, Martinelli E, et al. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: A short term study [J]. Eur. Cells Mater., 2017, 33: 90
|
4 |
Wang J, Liu L M, Wu Y F, et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration [J]. Acta Biomater., 2017, 50: 546
|
5 |
Chen K, Xie X H, Tang H Y, et al. In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys [J]. Bioact. Mater., 2020, 5: 275
|
6 |
Makkar P, Kang H J, Padalhin A R, et al. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications [J]. Appl. Surf. Sci., 2020, 510: 145333
|
7 |
Liu J N, Lin Y L, Bian D, et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone [J]. Acta Biomater., 2019, 98: 50
|
8 |
Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27: 1013
|
9 |
Xue D C, Yun Y H, Tan Z Q, et al. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials [J]. J. Mater. Sci. Technol., 2012, 28: 261
|
10 |
Vidal C V, Muñoz A I. Influence of protein adsorption on corrosion of biomedical alloys [A]. Bio-Tribocorrosion in Biomaterials and Medical Implants [M]. Cambridge: Woodhead Publishing, 2013: 187
|
11 |
El-Taib Heakal F, Bakry A M. Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting [J]. Mater. Chem. Phys., 2018, 220: 35
|
12 |
Gu X N, Zheng Y F, Chen L J. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys [J]. Biomed. Mater., 2009, 4: 065011
|
13 |
Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
|
14 |
Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
|
15 |
Wang Y S, Lim C S, Lim C V, et al. In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid [J]. Mater. Sci. Eng., 2011, C31: 579
|
16 |
Yang L, Hort N, Willumeit R, et al. Effects of corrosion environment and proteins on magnesium corrosion [J]. Corros. Eng. Sci. Technol., 2012, 47: 335
|
17 |
Wagener V, Virtanen S. Protective layer formation on magnesium in cell culture medium [J]. Mater. Sci. Eng., 2016, C63: 341
|
18 |
Wagener V, Virtanen S. Influence of electrolyte composition (simulated body fluid vs. Dulbeccos modified eagles medium), temperature, and solution flow on the biocorrosion behavior of commercially pure Mg [J]. Corrosion, 2017, 73: 1413
|
19 |
Zhang J, Kong N, Shi Y J, et al. Influence of proteins and cells on in vitro corrosion of Mg-Nd-Zn-Zr alloy [J]. Corros. Sci., 2014, 85: 477
|
20 |
Mueller W D, de Mele M F L, Nascimento M L, et al. Degradation of magnesium and its alloys: Dependence on the composition of the synthetic biological media [J]. J. Biomed. Mater. Res., 2009, 90A: 487
|
21 |
Geis-Gerstorfer J, Schille C, Schweizer E, et al. Blood triggered corrosion of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1761
|
22 |
Harrison R, Maradze D, Lyons S, et al. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 539
|
23 |
Walker J, Shadanbaz S, Kirkland N T, et al. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing [J]. J. Biomed. Mater. Res., 2012, 100B: 1134
|
24 |
Wang Y, Cui L Y, Zeng R C, et al. In vitro degradation of pure magnesium—The effects of glucose and/or amino acid [J]. Materials, 2017, 10: 725
|
25 |
Shkirskiy V, Keil P, Hintze-Bruening H, et al. The effects of L-cysteine on the inhibition and accelerated dissolution processes of zinc metal [J]. Corros. Sci., 2015, 100: 101
|
26 |
Cheng X L, Roscoe S G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials, 2005, 26: 7350
|
27 |
Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
|
28 |
Wang L N, Huang X Q, Shinbine A, et al. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 295
|
29 |
Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. J. Biomed. Mater. Res., 1982, 16: 125
|
30 |
Höhn S, Braem A, Neirinck B, et al. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants [J]. Mater. Sci. Eng., 2017, C73: 798
|
31 |
Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin [J]. IUBMB Life, 2005, 57: 787
|
32 |
Omanovic S, Roscoe S G. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir, 1999, 15: 8315
|
33 |
Laggoun R, Ferhat M, Saidat B, et al. Effect of p-toluenesulfonyl hydrazide on copper corrosion in hydrochloric acid solution [J]. Corros. Sci., 2020, 165: 108363
|
34 |
Kidoaki S, Matsuda T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope [J]. Langmuir, 1999, 15: 7639
|
35 |
Wassell D T H, Embery G. Adsorption of bovine serum albumin on to titanium powder [J]. Biomaterials, 1996, 17: 859
|
36 |
Yan Y, Yang H J, Su Y J, et al. Albumin adsorption on CoCrMo alloy surfaces [J]. Sci. Rep., 2016, 5: 18403
|
37 |
Zhou J, Chen S F, Jiang S Y. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model [J]. Langmuir, 2003, 19: 3472
|
38 |
Muir J M R, Costa D, Idriss H. DFT computational study of the RGD peptide interaction with the rutile TiO2 (110) surface [J]. Surf. Sci., 2014, 624: 8
|
39 |
Jeyachandran Y L, Mielczarski E, Rai B, et al. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces [J]. Langmuir, 2009, 25: 11614
|
40 |
Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater., 1993, 14: 287
|
41 |
Hedberg Y S, Wallinder I O. Metal release from stainless steel in biological environments: A review [J]. Biointerphases, 2015, 11: 018901
|
42 |
Lundin M, Hedberg Y, Jiang T, et al. Adsorption and protein-induced metal release from chromium metal and stainless steel [J]. J. Colloid Interface Sci., 2012, 366: 155
|
43 |
Wagener V, Faltz A S, Killian M S, et al. Protein interactions with corroding metal surfaces: Comparison of Mg and Fe [J]. Faraday Discuss., 2015, 180: 347
|
44 |
Roach P, Farrar D, Perry C C. Interpretation of protein adsorption: Surface-induced conformational changes [J]. J. Am. Chem. Soc., 2005, 127: 8168
|
45 |
Yamamoto A, Kohyama Y. Cytocompatibility of Mg alloys and the effect of cells on their degradation in biological environment [A]. Magnesium Technology2014 [M]. Cham: Springer, 2014: 381
|
46 |
Pradier C M, Costa D, Rubio C, et al. Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization [J]. Surf. Interface Anal., 2002, 34: 50
|
47 |
Gallo M, Tadier S, Meille S, et al. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation [J]. J. Eur. Ceram. Soc., 2018, 38: 899
|
48 |
Ouerd A, Alemany-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochim. Acta, 2008, 53: 4461
|
49 |
Wang Q C, Zhang B C, Ren Y B, et al. Research and application of biomedical nickel-free stainless steels [J]. Acta Metall. Sin., 2017, 53: 1311
|
49 |
王青川, 张炳春, 任伊宾等. 医用无镍不锈钢的研究与应用 [J]. 金属学报, 2017, 53: 1311
|
50 |
Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
|
50 |
于振涛, 余 森, 程 军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
|
51 |
Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181
|
52 |
Xu W C, Yu F, Yang L H, et al. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin [J]. Mater. Sci. Eng., 2018, C92: 11
|
53 |
Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
|
54 |
Hedberg Y, Wang X, Hedberg J, et al. Surface-protein interactions on different stainless steel grades: Effects of protein adsorption, surface changes and metal release [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 1015
|
55 |
Khan M A, Williams R L, Williams D F. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions [J]. Biomaterials, 1999, 20: 631
|
56 |
Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829
|
57 |
Huang H H, Lee T H. Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin [J]. Dent. Mater., 2005, 21: 749
|
58 |
Yu F, Addison O, Davenport A J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V [J]. Acta Biomater., 2015, 26: 355
|
59 |
Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution [J]. J. Biomed. Mater. Res., 2007, 81A: 531
|
60 |
Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765
|
61 |
Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behaviour of a Ti6Al4V alloy [J]. Wear, 2006, 261: 1002
|
62 |
Vidal C V, Muñoz A I. Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy [J]. Electrochim. Acta, 2010, 55: 8445
|
63 |
Yan Y, Yang H J, Su Y J, et al. Study of the tribocorrosion behaviors of albumin on a cobalt-based alloy using scanning Kelvin probe force microscopy and atomic force microscopy [J]. Electrochem. Commun., 2016, 64: 61
|
64 |
Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492
|
65 |
Wang Z W, Yan Y, Su Y J, et al. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment [J]. Appl. Surf. Sci., 2017, 406: 319
|
66 |
Karimi S, Nickchi T, Alfantazi A. Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in phosphate buffered saline solutions [J]. Corros. Sci., 2011, 53: 3262
|
67 |
Karimi S, Alfantazi A M. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions [J]. Mater. Sci. Eng., 2014, C40: 435
|
68 |
Karimi S, Nickchi T, Alfantazi A M. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions [J]. Appl. Surf. Sci., 2012, 258: 6087
|
69 |
Karimi S, Alfantazi A M. Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin [J]. J. Electrochem. Soc., 2013, 160: C206
|
70 |
Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
|
71 |
Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
|
71 |
王鲁宁, 孟 瑶, 刘丽君等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
|
72 |
Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
|
72 |
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
|
73 |
Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin [J]. Corros. Sci., 2010, 52: 3341
|
74 |
Liu C L, Zhang Y, Zhang C Y, et al. Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium [J]. Front. Mater. Sci., 2014, 8: 244
|
75 |
Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin [J]. J. Mater. Res., 2007, 22: 1806
|
76 |
Harandi S E, Banerjee P C, Easton C D, et al. Influence of bovine serum albumin in Hanks solution on the corrosion and stress corrosion cracking of a magnesium alloy [J]. Mater. Sci. Eng., 2017, C80: 335
|
77 |
Li T, He Y, Zhou J X, et al. Influence of albumin on in vitro degradation behavior of biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy [J]. Mater. Lett., 2018, 217: 227
|
78 |
Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
|
79 |
Hornberger H, Witte F, Hort N, et al. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1746
|
80 |
Johnson I, Jiang W S, Liu H N. The effects of serum proteins on magnesium alloy degradation in vitro [J]. Sci. Rep., 2017, 7: 14335
|
81 |
Gu X N, Li N, Zheng Y F, et al. In vitro degradation performance and biological response of a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., 2011, B176: 1778
|
82 |
Willumeit R, Fischer J, Feyerabend F, et al. Chemical surface alteration of biodegradable magnesium exposed to corrosion media [J]. Acta Biomater., 2011, 7: 2704
|
83 |
Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
|
84 |
Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
|
85 |
Hedberg Y S. Role of proteins in the degradation of relatively inert alloys in the human body [J]. npj Mater. Degrad., 2018, 2: 26
|
86 |
Vidal C V, Muñoz A I. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954
|
87 |
Mareci D, Chelariu R, Gordin D M, et al. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomater., 2009, 5: 3625
|
88 |
Hedberg Y, Karlsson M E, Blomberg E, et al. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media [J]. Colloids Surf., 2014, 122B: 216
|
89 |
Hedberg Y, Karlsson M E, Wei Z, et al. Interaction of albumin and fibrinogen with stainless steel-influence of sequential exposure and protein aggregation on metal release and corrosion resistance [J]. Corrosion, 2017, 73: 1423
|
90 |
Hirsh S L, McKenzie D R, Nosworthy N J, et al. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates [J]. Colloids Surf., 2013, 103B: 395
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|