Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 1-15    DOI: 10.11900/0412.1961.2020.00198
  综述 本期目录 | 过刊浏览 |
蛋白质吸附对医用金属材料体外腐蚀行为的影响
王鲁宁1,2(), 刘丽君1, 岩雨1,3, 杨坤1, 陆黎立1
1.北京科技大学 材料科学与工程学院 北京材料基因工程高精尖创新中心 北京 100083
2.北京科技大学 新金属材料国家重点实验室 北京 100083
3.北京科技大学 新材料技术研究院 北京 100083
Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals
WANG Luning1,2(), LIU Lijun1, YAN Yu1,3, YANG Kun1, LU Lili1
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
Luning WANG, Lijun LIU, Yu YAN, Kun YANG, Lili LU. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. Acta Metall Sin, 2021, 57(1): 1-15.

全文: PDF(9482 KB)   HTML
摘要: 

医用金属材料与体液接触时,蛋白质会快速吸附在其表面,并对材料的腐蚀行为产生影响。体外测试结果表明,蛋白质的吸附会减缓腐蚀;蛋白质-金属复合物脱离材料表面会加速腐蚀,如果沉积在材料表面,则会减缓腐蚀。蛋白质在金属材料表面的吸附及对腐蚀的影响与自身的种类和浓度、金属材料的性质等因素有关。目前,蛋白质吸附对医用金属材料腐蚀行为的影响尚未达成共识。蛋白质作为体液中重要的成分之一,体外测试中需要考虑其对医用金属材料腐蚀的影响,以便于明确体内外测试结果的差异和寻找合适的体外测试环境,这将有利于对医用金属材料在体内的腐蚀行为做出合理的预测。

关键词 蛋白质医用金属材料腐蚀吸附体外测试    
Abstract

Protein could adsorb on the surfaces when biomedical metals contact with body fluids and then affect the corrosion behavior of metals. In vitro results demonstrate that protein adsorption retards metal dissolution, while the detachment of metal-protein complex from the surface accelerates the corrosion or its deposition could impede the metal corrosion. Protein adsorption and its influences on the metal corrosion are related to many factors, such as the type and content of proteins as well as the pro-perty of metals. Therefore, consensus has not been made on the influences of protein on metal corrosion. However, as one of most important components in the body fluids, it should be taken into consideration for the effects of protein on the corrosion behavior of metals in vitro. So that we can find the discrepancy between in vivo and in vitro tests and find the suitable simulated environment in vitro. This will help predict reasonably the corrosion behavior of biomedical metals in the human body.

Key wordsprotein    biomedical metal    corrosion    adsorption    in vitro test
收稿日期: 2020-06-03     
ZTFLH:  TG146.13  
基金资助:国家重点研发计划项目(2016YFC251100);国家自然科学基金项目(51503014)
作者简介: 王鲁宁,男,1980年生,教授,博士
MaterialIn vitroIn vivoRef.
SolutionWeight lossHydrogen evolutionVolume reductions/
weight loss
Pure MgPBS0.28±0.070.19±0.020.15±0.03[3]
HBSS0.72±0.310.57±0.07
DMEM1.07±0.100.57±0.07
Mg-10GdPBS0.61±0.100.40±0.101.11±0.05[3]
HBSS1.57±0.621.23±0.56
DMEM0.42±0.120.20±0.01
Mg-2AgPBS16.71±3.0615.12±2.970.13±0.04[3]
HBSS5.41±0.713.48±0.36
DMEM2.21±0.260.68±0.04
Pure MgDMEM

Static immersion 1.6±0.3

Aortic bioreactor:

Lumen>4.0±0.8

Wall 1.9±0.5

Aortic lumen 1.1±0.3[4]
Aortic wall 1.5±0.6
Mg-2SrHBSS~0.37~0.321.37[5]
Mg-2Sr-CaHBSS~0.24~0.211.10[5]
Mg-2Sr-ZnHBSS~0.15~0.110.85[5]
Pure MgHBSS17.2%±0.5% (14 d)65.4%±1.5% (4 weeks)[6]
Mg+Ca-Sr-P coatingHBSS4.8%±0.7% (14 d)76.7%±1.9% (4 weeks)[6]
Mg-30%Sc (mass fraction)HBSSα+β phase 3.4±0.1β phase 0.06±0.01[7]
Single phase 2.9±0.1
表1  Mg及镁合金体内外测试中的腐蚀速率[3~7] (mm/a, unless otherwise indicated)
图1  体内外测试中镁合金腐蚀速率的对比(少于3组数据所得的条形图无误差棒)
FluidNa+K+Ca2+Mg2+Cl-HCO3-HPO42-H2PO4-SO42-
mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1
Blood plasma[10,13]134-1433.5-4.72.1-2.71.5100-10825-301.0-0.5
Synovia fluids[10]133-1393.5-4.51.2-2.487-138---
SBF[15]142.05.02.51.5148.04.21.0-0.5
PBS[3]154.14.1--140.6-8.11.5-
HBSS[3,12]142.85.82.50.8143.34.20.30.40.8
DMEM[3,12]155.35.31.80.8115.744.10.9-0.8
Ringer??s[14]1474.14.3-160----
SBP[11]142.05.02.51.5103.027.01.0-0.5
FluidAmino acidsGlucoseUric acidVitaminsPhenol redAlbuminIgGFibrinogen
g·L-1g·L-1g·L-1g·L-1g·L-1g·L-1
Blood plasma[10,13]20-51650-96630.5-70.7--37.6-54.96.4-13.52-4
Synovia fluids[10]--39-6-101.47-4.62-
SBF[15]----
PBS[3]----
HBSS[3,12]-5.6--
DMEM[3,12]10.625.00.150.04
Ringer??s[14]----
SBP[11]----
表2  血浆、关节滑液、几种常用模拟体液和模拟血浆的主要化学成分[3,10~15]
MetalSalineAlbuminFibrinogen
Aluminum1.301.481.00
Chromium0.502.380.70
Cobalt1.5031.5040.95
Copper3.7216996.60
Molybdenum514390355
Nickel4.807.709.50
Titanium0.20.20.2
表3  金属粉末在生理盐水和含有蛋白质的溶液中浸泡16 h后,金属离子的释放量[29] (10-6)
图2  牛血清白蛋白(BSA,PDB bank:4f5s)的结构示意图
图3  分子动力学模拟BSA在2种表面吸附后的优化构型[39]
ProteinStructureSizeMolecular weightIsoelectric point
Human serum albumin (HSA)Triangular8 nm×8 nm×3 nm66 KDa4.7
BSATriangular8 nm×8 nm×3 nm66 KDa4.7
Bovine submaxillary gland mucin (BSM)Random coilRadius of 130 nm7 MDa3
Lysozyme (LYS)Globular4.5 nm×3 nm×3 nm14.1 KDa11
表4  不同蛋白质的结构、尺寸、分子量及等电点[42]
图4  在模拟体液中,蛋白质通过静电吸引作用吸附在材料表面(a) BSA adsorbs on Mg surface with positive charges(b) LYS adsorbs on Fe surface with negative charges
MaterialBinding constant

Saturation value

Hz

BSA OHa5.347.2
BSA CH3a5.440.9
Fg OH10.9102.0
Fg CH336.092.6
表5  BSA和纤维蛋白在材料表面的结合常数和吸附饱和值[44]
图5  模拟海水环境中,BSA在不锈钢表面的吸附模型图:BSA先是牢固地吸附在氧化层上,溶液中的Mg2+与之连接,促使第二层BSA吸附[46]
图6  CoCrMo合金表面及BSA吸附在CoCrMo合金表面后的AFM形貌图和对应的扫描Kelvin探针测量的电势图,每张图下的曲线表示图中绿线位置的形貌起伏和电势变化,以及BSA在CoCrMo表面吸附后,诱导表面电子聚集的示意图[36]
图7  PBS中添加不同浓度BSA (0~4 g/L)时,316L[66]、CoCrMo[66]、Ti-6Al-4V[66]和纯Zr[28]的动电位极化曲线
图8  M1A镁合金在SBF和含有BSA的SBF (A-SBF)中的腐蚀模型[15](a) M1A sample (b-d) M1A suffered pitting corrosion in SBF (e-g) BSA adsorption protected the M1A from pitting corrosion in A-SBF
MaterialNaClNaCl+NaFNaCl+H2O2PBSHBSSSBFRinger??sSBPM199DMEM
Mg?????T?
Mg-Ca??
AZ31??
AZ80?
AZ91????
M1AT
LAE442??
ZK21-0.2Sc??
Mg-Nd-Zn-Zr??
WE43??
MgY??
Mg-Zn-Zr??
Zn??
316L stainless steel???????

Low carbon austenite

stainless steel

??

430/304

stainless steel

??
Ti??????
Ti-6Al-4V???????
CoCrMo???
NbT
ZrT
表6  体外测试中,不同溶液中添加蛋白质对医用金属材料腐蚀速率的影响
图9  BSA吸附过程中,钛合金/液体界面之间电荷转移的理论模型[55]
1 Talha M, Ma Y C, Kumar P, et al. Role of protein adsorption in the bio corrosion of metallic implants—A review [J]. Colloids Surf., 2019, 176B: 494
2 Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater., 2015, 13: 16
3 Marco I, Myrissa A, Martinelli E, et al. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: A short term study [J]. Eur. Cells Mater., 2017, 33: 90
4 Wang J, Liu L M, Wu Y F, et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration [J]. Acta Biomater., 2017, 50: 546
5 Chen K, Xie X H, Tang H Y, et al. In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys [J]. Bioact. Mater., 2020, 5: 275
6 Makkar P, Kang H J, Padalhin A R, et al. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications [J]. Appl. Surf. Sci., 2020, 510: 145333
7 Liu J N, Lin Y L, Bian D, et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone [J]. Acta Biomater., 2019, 98: 50
8 Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27: 1013
9 Xue D C, Yun Y H, Tan Z Q, et al. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials [J]. J. Mater. Sci. Technol., 2012, 28: 261
10 Vidal C V, Muñoz A I. Influence of protein adsorption on corrosion of biomedical alloys [A]. Bio-Tribocorrosion in Biomaterials and Medical Implants [M]. Cambridge: Woodhead Publishing, 2013: 187
11 El-Taib Heakal F, Bakry A M. Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting [J]. Mater. Chem. Phys., 2018, 220: 35
12 Gu X N, Zheng Y F, Chen L J. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys [J]. Biomed. Mater., 2009, 4: 065011
13 Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
14 Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
15 Wang Y S, Lim C S, Lim C V, et al. In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid [J]. Mater. Sci. Eng., 2011, C31: 579
16 Yang L, Hort N, Willumeit R, et al. Effects of corrosion environment and proteins on magnesium corrosion [J]. Corros. Eng. Sci. Technol., 2012, 47: 335
17 Wagener V, Virtanen S. Protective layer formation on magnesium in cell culture medium [J]. Mater. Sci. Eng., 2016, C63: 341
18 Wagener V, Virtanen S. Influence of electrolyte composition (simulated body fluid vs. Dulbecco􀆳s modified eagle􀆳s medium), temperature, and solution flow on the biocorrosion behavior of commercially pure Mg [J]. Corrosion, 2017, 73: 1413
19 Zhang J, Kong N, Shi Y J, et al. Influence of proteins and cells on in vitro corrosion of Mg-Nd-Zn-Zr alloy [J]. Corros. Sci., 2014, 85: 477
20 Mueller W D, de Mele M F L, Nascimento M L, et al. Degradation of magnesium and its alloys: Dependence on the composition of the synthetic biological media [J]. J. Biomed. Mater. Res., 2009, 90A: 487
21 Geis-Gerstorfer J, Schille C, Schweizer E, et al. Blood triggered corrosion of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1761
22 Harrison R, Maradze D, Lyons S, et al. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 539
23 Walker J, Shadanbaz S, Kirkland N T, et al. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing [J]. J. Biomed. Mater. Res., 2012, 100B: 1134
24 Wang Y, Cui L Y, Zeng R C, et al. In vitro degradation of pure magnesium—The effects of glucose and/or amino acid [J]. Materials, 2017, 10: 725
25 Shkirskiy V, Keil P, Hintze-Bruening H, et al. The effects of L-cysteine on the inhibition and accelerated dissolution processes of zinc metal [J]. Corros. Sci., 2015, 100: 101
26 Cheng X L, Roscoe S G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials, 2005, 26: 7350
27 Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
28 Wang L N, Huang X Q, Shinbine A, et al. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 295
29 Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. J. Biomed. Mater. Res., 1982, 16: 125
30 Höhn S, Braem A, Neirinck B, et al. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants [J]. Mater. Sci. Eng., 2017, C73: 798
31 Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin [J]. IUBMB Life, 2005, 57: 787
32 Omanovic S, Roscoe S G. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir, 1999, 15: 8315
33 Laggoun R, Ferhat M, Saidat B, et al. Effect of p-toluenesulfonyl hydrazide on copper corrosion in hydrochloric acid solution [J]. Corros. Sci., 2020, 165: 108363
34 Kidoaki S, Matsuda T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope [J]. Langmuir, 1999, 15: 7639
35 Wassell D T H, Embery G. Adsorption of bovine serum albumin on to titanium powder [J]. Biomaterials, 1996, 17: 859
36 Yan Y, Yang H J, Su Y J, et al. Albumin adsorption on CoCrMo alloy surfaces [J]. Sci. Rep., 2016, 5: 18403
37 Zhou J, Chen S F, Jiang S Y. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model [J]. Langmuir, 2003, 19: 3472
38 Muir J M R, Costa D, Idriss H. DFT computational study of the RGD peptide interaction with the rutile TiO2 (110) surface [J]. Surf. Sci., 2014, 624: 8
39 Jeyachandran Y L, Mielczarski E, Rai B, et al. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces [J]. Langmuir, 2009, 25: 11614
40 Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater., 1993, 14: 287
41 Hedberg Y S, Wallinder I O. Metal release from stainless steel in biological environments: A review [J]. Biointerphases, 2015, 11: 018901
42 Lundin M, Hedberg Y, Jiang T, et al. Adsorption and protein-induced metal release from chromium metal and stainless steel [J]. J. Colloid Interface Sci., 2012, 366: 155
43 Wagener V, Faltz A S, Killian M S, et al. Protein interactions with corroding metal surfaces: Comparison of Mg and Fe [J]. Faraday Discuss., 2015, 180: 347
44 Roach P, Farrar D, Perry C C. Interpretation of protein adsorption: Surface-induced conformational changes [J]. J. Am. Chem. Soc., 2005, 127: 8168
45 Yamamoto A, Kohyama Y. Cytocompatibility of Mg alloys and the effect of cells on their degradation in biological environment [A]. Magnesium Technology2014 [M]. Cham: Springer, 2014: 381
46 Pradier C M, Costa D, Rubio C, et al. Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization [J]. Surf. Interface Anal., 2002, 34: 50
47 Gallo M, Tadier S, Meille S, et al. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation [J]. J. Eur. Ceram. Soc., 2018, 38: 899
48 Ouerd A, Alemany-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochim. Acta, 2008, 53: 4461
49 Wang Q C, Zhang B C, Ren Y B, et al. Research and application of biomedical nickel-free stainless steels [J]. Acta Metall. Sin., 2017, 53: 1311
49 王青川, 张炳春, 任伊宾等. 医用无镍不锈钢的研究与应用 [J]. 金属学报, 2017, 53: 1311
50 Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
50 于振涛, 余 森, 程 军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
51 Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181
52 Xu W C, Yu F, Yang L H, et al. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin [J]. Mater. Sci. Eng., 2018, C92: 11
53 Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
54 Hedberg Y, Wang X, Hedberg J, et al. Surface-protein interactions on different stainless steel grades: Effects of protein adsorption, surface changes and metal release [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 1015
55 Khan M A, Williams R L, Williams D F. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions [J]. Biomaterials, 1999, 20: 631
56 Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829
57 Huang H H, Lee T H. Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin [J]. Dent. Mater., 2005, 21: 749
58 Yu F, Addison O, Davenport A J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V [J]. Acta Biomater., 2015, 26: 355
59 Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution [J]. J. Biomed. Mater. Res., 2007, 81A: 531
60 Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765
61 Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behaviour of a Ti6Al4V alloy [J]. Wear, 2006, 261: 1002
62 Vidal C V, Muñoz A I. Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy [J]. Electrochim. Acta, 2010, 55: 8445
63 Yan Y, Yang H J, Su Y J, et al. Study of the tribocorrosion behaviors of albumin on a cobalt-based alloy using scanning Kelvin probe force microscopy and atomic force microscopy [J]. Electrochem. Commun., 2016, 64: 61
64 Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492
65 Wang Z W, Yan Y, Su Y J, et al. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment [J]. Appl. Surf. Sci., 2017, 406: 319
66 Karimi S, Nickchi T, Alfantazi A. Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in phosphate buffered saline solutions [J]. Corros. Sci., 2011, 53: 3262
67 Karimi S, Alfantazi A M. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions [J]. Mater. Sci. Eng., 2014, C40: 435
68 Karimi S, Nickchi T, Alfantazi A M. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions [J]. Appl. Surf. Sci., 2012, 258: 6087
69 Karimi S, Alfantazi A M. Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin [J]. J. Electrochem. Soc., 2013, 160: C206
70 Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
71 Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
71 王鲁宁, 孟 瑶, 刘丽君等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
72 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
72 曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
73 Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin [J]. Corros. Sci., 2010, 52: 3341
74 Liu C L, Zhang Y, Zhang C Y, et al. Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium [J]. Front. Mater. Sci., 2014, 8: 244
75 Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin [J]. J. Mater. Res., 2007, 22: 1806
76 Harandi S E, Banerjee P C, Easton C D, et al. Influence of bovine serum albumin in Hanks􀆳 solution on the corrosion and stress corrosion cracking of a magnesium alloy [J]. Mater. Sci. Eng., 2017, C80: 335
77 Li T, He Y, Zhou J X, et al. Influence of albumin on in vitro degradation behavior of biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy [J]. Mater. Lett., 2018, 217: 227
78 Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
79 Hornberger H, Witte F, Hort N, et al. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1746
80 Johnson I, Jiang W S, Liu H N. The effects of serum proteins on magnesium alloy degradation in vitro [J]. Sci. Rep., 2017, 7: 14335
81 Gu X N, Li N, Zheng Y F, et al. In vitro degradation performance and biological response of a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., 2011, B176: 1778
82 Willumeit R, Fischer J, Feyerabend F, et al. Chemical surface alteration of biodegradable magnesium exposed to corrosion media [J]. Acta Biomater., 2011, 7: 2704
83 Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
84 Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
85 Hedberg Y S. Role of proteins in the degradation of relatively inert alloys in the human body [J]. npj Mater. Degrad., 2018, 2: 26
86 Vidal C V, Muñoz A I. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954
87 Mareci D, Chelariu R, Gordin D M, et al. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomater., 2009, 5: 3625
88 Hedberg Y, Karlsson M E, Blomberg E, et al. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media [J]. Colloids Surf., 2014, 122B: 216
89 Hedberg Y, Karlsson M E, Wei Z, et al. Interaction of albumin and fibrinogen with stainless steel-influence of sequential exposure and protein aggregation on metal release and corrosion resistance [J]. Corrosion, 2017, 73: 1423
90 Hirsh S L, McKenzie D R, Nosworthy N J, et al. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates [J]. Colloids Surf., 2013, 103B: 395
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.