Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1157-1164    DOI: 10.11900/0412.1961.2017.00410
  本期目录 | 过刊浏览 |
激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为
贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀
陕西理工大学材料科学与工程学院 汉中 723001
Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons
Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
引用本文:

贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. Acta Metall Sin, 2018, 54(8): 1157-1164.

全文: PDF(5419 KB)   HTML
摘要: 

为了开发微机电系统用快响应微执行器材料,采用熔体快淬法制备了激冷Ti-47Ni (原子分数,%)形状记忆合金薄带,利用CLSM、XRD、DSC和弯曲实验研究了铜辊速率和退火工艺对Ti-47Ni合金薄带显微组织、相组成、相变行为和形状记忆行为的影响。结果表明,不同辊速制备的铸态和300~800 ℃退火态Ti-47Ni合金薄带的显微组织均呈纵横排列的柱状,辊速越高合金薄带的晶粒越细,退火工艺对合金薄带显微组织影响不大。Ti-47Ni合金薄带的组成相为马氏体(B19'相,单斜结构)+母相(B2相,CsCl型结构),冷却/加热时发生B2→B19'/B19'→B2一阶段马氏体相变,正、逆马氏体相变温度分别约为54和81 ℃,相变热滞约为27 ℃。随辊速增加,合金薄带马氏体相变温度降低,形状记忆恢复率提高。随退火温度升高,合金薄带相变行为变化不大,形状记忆恢复率在93%~98%之间变化。铸态和退火态Ti-47Ni合金薄带皆具有优异的形状记忆效应。

关键词 Ti-Ni形状记忆合金激冷薄带显微组织相变形状记忆效应    
Abstract

The micro-actuater materials are needed urgently in micro-electro-mechanical systems (MEMS) which are developing rapidly. The melt-spun Ti-Ni shape memory alloy ribbons have become candidate materials since their fast heat response and large acting density. The bulk Ti-47Ni (atom fraction, %) shape memory alloy is an ideal material to make thermosensitive actuators since its one-stage martensitic transformation and small temperature hysteresis. In order to develop the micro-actuator materials with fast response using in MEMS, the chilled Ti-47Ni alloy ribbons were fabricated by melt-spinning in this research. The effects of the roller speed and the annealing processes on microstructure, phase composition, phase transformation behaviors and shape memory effect of Ti-47Ni alloy ribbons were investigated by CLSM, XRD, DSC and bending test. The results show that the microstructure of as-cast and 300~800 ℃ annealed Ti-47Ni alloy ribbons fabricated under different roller speeds is vertically and horizontally arrayed columnar. The higher the roller speed, the finer the grain is. The annealing processes do nearly affect the microstructure of the alloy ribbons. The composition phases of Ti-47Ni alloy ribbons are martensite (B19' phase, monoclinic structure) and parent phase (B2 phase, CsCl-type structure). The B2→B19'/B19'→B2 type one-stage martensitic transformation occurs in Ti-47Ni alloy ribbons upon cooling and heating, the martensitic transformation temperature and the reverse martensitic transformation temperature are about 54 and 81 ℃, respectively, and the temperature hysteresis is about 27 ℃. With increasing the roller speed, the martensitic transformation temperatures of the alloy ribbons decrease, and the recovery rate of shape memory of the alloy ribbons increases. With increasing the annealing temperature, the transformation behaviors of the alloy ribbons change a little, and the recovery rate of shape memory changes in the range of 93%~98%. The as-cast and annealed Ti-47Ni alloy ribbons are all of excellent shape memory effect.

Key wordsTi-Ni shape memory alloy    chilling ribbon    microstructure    phase transformation    shape memory effect
收稿日期: 2017-09-25     
ZTFLH:  TG113.25  
基金资助:国家重点研发计划项目No.2016YFE0111400,陕西省自然科学基金项目No.2012JM6016,汉中市科技计划项目No.HZGXW1602和陕西理工大学研究生创新基金项目No.SLGYCX1823
作者简介:

作者简介 贺志荣,男,1960生,教授,博士

图1  辊速对Ti-47Ni合金薄带显微组织的影响
图2  退火温度对1000 r/min转速制备的Ti-47Ni合金薄带显微组织的影响
图3  不同辊速和退火温度下Ti-47Ni合金薄带的XRD谱
图4  辊速对Ti-47Ni合金薄带DSC曲线、冷却和加热相变峰温度TM、TA和热滞ΔT的影响
图5  转速为1000 r/min时退火温度对Ti-47Ni合金薄带DSC曲线、TM、TA和ΔT的影响
图6  转速为1000 r/min、退火温度为500 ℃时退火保温时间对Ti-47Ni合金薄带DSC曲线、TM、TA和ΔT的影响
图7  辊速为1000和1500 r/min时得到的铸态Ti-47Ni合金薄带的原始形貌、室温下形变后的形貌和加热恢复后的形貌
图8  800 ℃退火态Ti-47Ni合金薄带的原始形貌、形变后的形貌和加热恢复后的形貌
图9  退火温度对Ti-47Ni合金薄带形状记忆恢复率的影响
[1] Ghodssi R, Lin P Y.MEMS Materials and Processes Handbook[M]. New York: Springer, 2011: 361
[2] Lai B K, Kahn H, Phillips S M, et al.A comparison of PZT-based and TiNi shape memory alloy-based MEMS microactuators[J]. Ferroelectrics, 2004, 306: 221
[3] Zhang X, Luo X J, Hou Z Q, et al.Sputtering process research of multilayer metal thin film in MEMS devices[J]. Transducer Microsyst. Technol., 2018, 37(1): 11(张旭, 罗昕颉, 侯占强等. MEMS器件中多层金属薄膜溅射工艺研究[J]. 传感器与微系统, 2018, 37(1): 11)
[4] Leary M, Huang S, Ataalla T, et al.Design of shape memory alloy actuators for direct power by an automotive battery[J]. Mater. Des., 2013, 43: 460
[5] Niccoli F, Garion C, Maletta C, et al.Beam-pipe coupling in particle accelerators by shape memory alloy rings[J]. Mater. Des., 2017, 114: 603
[6] Heinen R, Miro S.Assessment of the influence of R-phase formation on the material behavior of NiTi using a micromechanical model[J]. Funct. Mater. Lett., 2012, 5: 1250015
[7] Miyazaki S, Fu Y Q, Huang W M.Thin Film Shape Memory Alloys: Fundamentals and Device Applications [M]. Cambridge: Cambridge University Press, 2009: 409
[8] Shariat B S, Meng Q L, Mahmud A S, et al.Functionally graded shape memory alloys: Design, fabrication and experimental evaluation[J]. Mater. Des., 2017, 124: 225
[9] Kaur N, Kaur D.Grain refinement of NiTi shape memory alloy thin films by W addition[J]. Mater. Lett., 2013, 91: 202
[10] Chen C, Tsao C S, Wu S K, et al.Characteristics of the strain glass transition in as-quenched and 250 ℃ early-aged Ti48.7Ni51.3 shape memory alloy[J]. Acta Mater., 2016, 120: 159
[11] He Z R, Liu L, Wu P Z, et al.Microstructure, transformation and shape memory behavior of chilled Ti-rich Ti-Ni alloy ribbons[J]. Trans. Mater. Heat Treat., 2016, 37(11): 12(贺志荣, 刘琳, 吴佩泽等. 激冷富钛Ti-Ni合金薄带的组织、相变和形状记忆行为[J]. 材料热处理学报, 2016, 37(11): 12)
[12] Kaya I, Tobe H, Karaca H E, et al.Effects of aging on the shape memory and superelasticity behavior of ultra-high strength Ni54Ti46 alloys under compression[J]. Mater. Sci. Eng., 2016, A678: 93
[13] Daghash S M, Ozbulut O E.Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading[J]. Mater. Des., 2016, 111: 504
[14] He Z R, Wang Q, Shao D W.Effect of aging on microstructure and superelasticity of Ti-50.8Ni-0.3Cr shape memory alloys[J]. Acta Metall. Sin., 2012, 48: 56(贺志荣, 王启, 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响[J]. 金属学报, 2012, 48: 56)
[15] Mas B, Biggs D, Vieito I, et al.Superelastic shape memory alloy cables for reinforced concrete applications[J]. Constr. Build. Mater., 2017, 148: 307
[16] Nespoli A, Villa E, Passaretti F.Effect of yttrium on microstructure, thermal properties and damping capacity of Ni41Ti50Cu9 alloy[J]. J. Alloys Compd., 2015, 653: 234
[17] Delobelle V, Chagnon G, Favier D, et al.Study of electropulse heat treatment of cold worked NiTi wire: From uniform to localised tensile behaviour[J]. J. Mater. Process. Technol., 2016, 227: 244
[18] Waddell A M, Punch J, Stafford J, et al.On the hydrodynamic characterization of a passive shape memory alloy valve[J]. Appl. Therm. Eng., 2015, 75: 731
[19] AbuZaiter A, Nafea M, Ali M S M. Development of a shape-memory-alloy micromanipulator based on integrated bimorph microactuators[J]. Mechatronics, 2016, 38: 16
[20] Hamdy A S H. Electrochemical behavior of Ti-Ni-Cu shape memory alloy ribbons used for the fabrication of sensors and actuators[J]. J. Phys., 2013, 17A: 317
[21] Jani J M, Leary M, Subic A, et al.A review of shape memory alloy research, applications and opportunities[J]. Mater. Des., 2014, 56: 1078
[22] Yin H, He Y J, Sun Q P.Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy[J]. J. Mech. Phys. Solids, 2014, 67: 100
[23] Ezaz T, Wang J, Sehitoglu H, et al.Plastic deformation of NiTi shape memory alloys[J]. Acta Mater., 2013, 61: 67
[24] Zheng H X, Wu D Z, Xue S C, et al.Martensitic transformation in rapidly solidified heusler Ni49Mn39Sn12 ribbons[J]. Acta Mater., 2011, 59: 5692
[25] Han N, Hou X L, Ma C W, et al.Application and development of melt rapid quenching process in preparation of La-Fe-Si alloys[J]. Hot Work. Technol., 2016, 45(24): 35(韩宁, 侯雪玲, 马春伟等. 熔体快淬工艺在制备La-Fe-Si合金中的应用与发展[J]. 热加工工艺, 2016, 45(24): 35)
[26] Wang Q, He Z R, Liu M Q, et al.Effects of Ni content and solution-aging treatment on multi-stage transformations of TiNi shape memory alloys[J]. Rare Met. Mater. Eng., 2011, 40: 395
[27] He Z R, Wu P Z, Liu K K, et al.Effect of Ni content on phase transformation behavior of chilled Ni-poor TiNi shape memory alloy ribbons[J]. Mater. Rev., 2017, 31(20): 17(贺志荣, 吴佩泽, 刘康凯等. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响[J]. 材料导报, 2017, 31(20): 17)
[28] He Z R, Liu M Q.Effects of annealing and deforming temperature on microstructure and deformation characteristics of Ti-Ni-V shape memory alloy[J]. Mater. Sci. Eng., 2012, B177: 986
[29] Jiang S Y, Zhang Y Q, Zhao Y Q.Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 140
[30] He Z R, Cai J F, Yang J, et al.Effect of Co on transition and deformation characteristics of Ti-Ni shape memory alloy[J]. Rare Met. Mater. Eng., 2010, 39: 633(贺志荣, 蔡继峰, 杨军等. Co对Ti-Ni形状记忆合金相变和形变特性的影响[J]. 稀有金属材料与工程, 2010, 39: 633)
[31] Goyal A, Khatri I, Singh A K, et al.X-ray diffraction patterns and diffracted intensity of spectral lines of He-like ions[J]. Radiat. Phys. Chem., 2017, 138: 16
[32] Liu C Q, Li W L, Fei W D.X-ray diffraction analysis of Pt film prepared by magnetron sputtering method[J]. J. Nanjing Univ.(Nat. Sci.), 2009, 45: 135(刘超前, 李伟力, 费维栋. 磁控溅射Pt薄膜织构的X射线衍射分析[J]. 南京大学学报(自然科学), 2009, 45: 135)
[33] He Z R.Multi-Stage reversible transformation types and their evolving processes of Ti-Ni shape memory alloys[J]. Acta Metall. Sin., 2007, 43: 353(贺志荣. Ti-Ni形状记忆合金多阶段可逆相变的类型及其演化过程[J]. 金属学报, 2007, 43: 353)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[7] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[8] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[9] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[14] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[15] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.