Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 809-823    DOI: 10.11900/0412.1961.2017.00559
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能
康慧君1, 李金玲1, 王同敏1(), 郭景杰2
1大连理工大学材料科学与工程学院辽宁省凝固控制与数字化制备技术重点实验室 大连 116024
2哈尔滨工业大学金属精密热加工国家级重点实验室 哈尔滨 150001
Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy
Huijun KANG1, Jinling LI1, Tongmin WANG1(), Jingjie GUO2
1 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
引用本文:

康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. Acta Metall Sin, 2018, 54(5): 809-823.

全文: PDF(18000 KB)   HTML
摘要: 

对Al-3Mn-7Be合金(原子分数,%)在1~1500 μm/s的抽拉速率下进行定向凝固实验,研究了抽拉速率对合金组织演化、金属间化合物形貌演变和合金力学性能等的影响规律。结果表明,Be元素的加入使二元相图向高Mn区移动,引入了金属间化合物λ相、T相、Be4AlMn和准晶I相,而且Be的加入明显细化了合金的组织。随着抽拉速率的增加,固/液界面过冷度和溶质过饱和度增加,引起初生金属间化合物相的竞争生长,初生相先由λ相转变为T相,后转变为准晶I相,伴随着形成初生Be4AlMn相。同时,初生相的形貌、尺寸和生长方式也随抽拉速率的增加而发生改变。随着抽拉速率的增加,定向凝固合金的强度先下降后提高,在抽拉速率较低和较高时,定向凝固合金均呈现了较大延伸率,这主要由其定向凝固组织、强化相的种类、形貌以及与基体构成的界面结构决定。

关键词 Al-Mn-Be合金定向凝固金属间化合物微观组织三维形貌力学性能    
Abstract

Intermetallic compounds (including quasicrystals) have been widely employed as reinforced phases in many alloys due to their high strength, high hardness and good thermal stability. The growth behavior and growth pattern of these intermetallic compounds affect the mechanical properties of materials significantly. However, the intermetallic compound, which exhibits complex crystal structures and directional bonding usually shows a faceted growth pattern with strong anisotropy and forms crystals with a wide range of morphologies and coarse grains during solidification. The inappropriate morphology and size of the intermetallic compound will destroy the integrity of the matrix and thus deteriorate the mechanical properties of materials. In this work, the microstructural evolution, morphology evolution of intermetallic compounds and mechanical properties have been investigated in directionally solidified Al-3Mn-7Be (atomic fraction, %) alloy with a wide pulling rates of 1~1500 μm/s. The addition of Be results in the shift of Al-Mn binary phase diagram toward the Mn-rich side, the appearance of intermetallic compounds, namely λ-phase, T-phase, Be4AlMn, and icosahedral quasicrystal (I-phase) and significantly refines the microstructures of the as-cast and directionally solidified samples. With increasing pulling rates, a transition of primary phase is observed from λ-phase to T-phase, and then I-phase, accompanied by the formation of the primary Be4AlMn phase, which can be attributed to the increase of supersaturation and supercooling near the solid/liquid interface. Meanwhile, the morphology, size and growth pattern of primary phases vary with the increase of pulling rates. The mechanical properties of directionally solidified Al-3Mn-7Be alloy have been investigated. It is indicated that the room-temperature strength of this alloy decreases first and then increases as the pulling rates increase, and a larger elongation is presented at the lowest and highest pulling rates, which can be attributed to the microstructures of alloys, properties of strengthening phases and the interfaces between matrix and strengthening phase.

Key wordsAl-Mn-Be alloy    directional solidification    intermetallic compound    microstructure    3D morphology    mechanical property
收稿日期: 2017-12-27     
ZTFLH:  TG111.4  
基金资助:资助项目 国家自然科学基金项目Nos.51774065、51525401、51690163和 51601028
作者简介:

作者简介 康慧君,男,1982年生,副教授,博士

图1  铸态Al-3Mn和Al-3Mn-7Be合金的XRD谱、微观组织及Al-3Mn-7Be合金组成相的AES分析和降温DSC曲线
图2  不同抽拉速率下定向凝固Al-3Mn-7Be合金的纵截面组织及对应初生相的SAED谱
图3  抽拉速率为1 μm/s时获得的λ相三维形貌
图4  λ相单胞沿[0001]和[1010]方向的投影图
图5  不同抽拉速率下T相的三维形貌演变
图6  Be4AlMn相和T相的TEM明场相及SAED谱
图7  Be4AlMn相的三维形貌
图8  不同抽拉速率下定向凝固Al-3Mn-7Be合金的室温应力-应变曲线及对应的微观组织
Pulling rate /(μms-1) UTS / MPa YS / MPa Elongation / % Elastic modulus / GPa
0 78 71 2.99 66.5
1 184 116 15.62 94.6
5 146 88 6.33 41.9
60 189 103 9.48 67.1
200 215 115 9.65 77.3
1000 244 123 12.01 64.4
表1  不同抽拉速率下定向凝固Al-3Mn-7Be合金的室温拉伸性能
图9  定向凝固Al-3Mn-7Be合金试样室温拉伸断口附近的变形区显微组织
图10  1000 μm/s抽拉速率下定向凝固Al-3Mn-7Be合金试样的TEM分析
图11  1000 μm/s抽拉速率下定向凝固Al-3Mn-7Be合金拉伸试样的TEM明场像
图12  铸态和不同抽拉速率下定向凝固Al-3Mn-7Be合金试样的拉伸断口形貌
[1] Shechtman D, Blech I, Gratias D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Phys. Rev. Lett., 1984, 53: 1951
[2] Hargittai I.Dan Shechtman's quasicrystal discovery in perspective[J]. Israel J. Chem., 2011, 51: 1144
[3] Lubensky T C, Ramaswamy S, Toner J, et al.Dislocation motion in quasicrystals and implications for macroscopic properties[J]. Phys. Rev., 1986, 33B: 7715
[4] Watanabe M, Inoue A, Kimura H M.High mechanical strength of rapidly solidified Al92Mn6Ln2 (Ln=lanthanide metal) alloys with finely mixed icosahedral and Al phases[J]. Mater. Trans. JIM, 1993, 34: 162
[5] Bae D H, Kim S H, Kim D H, et al.Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles[J]. Acta Mater., 2002, 50: 2343
[6] Bae D H, Lee M H, Kim K T, et al.Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys[J]. J. Alloys Compd., 2002, 342: 445
[7] Park E S, Yi S, Ok J B, et al. Solidification and microstructure control of Mg-rich alloys in the Mg-Zn-Y ternary systemya [J]. MRS Online Proc. Libr. Arch., 2000, 643: K2.5
[8] Singh A, Nakamura M, Watanabe M, et al.Quasicrystal strengthened Mg-Zn-Y alloys by extrusion[J]. Scr. Mater., 2003, 49: 417
[9] Singh A, Osawa Y, Somekawa H, et al.Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg-Zn-Y alloys containing quasicrystal phase[J]. Scr. Mater., 2011, 64: 661
[10] Goel D B, Roorkee U P, Furrer P, et al.Precipitation in aluminum manganese (iron, copper) alloys[J]. Aluminium, 1974, 50: 511
[11] Huang K, Zhang K, Marthinsen K, et al.Controlling grain structure and texture in Al-Mn from the competition between precipitation and recrystallization[J]. Acta Mater., 2017, 141: 360
[12] Kang H J, Li X Z, Su Y Q, et al.3-D morphology and growth mechanism of primary Al6Mn intermetallic compound in directionally solidified Al-3at.%Mn alloy[J]. Intermetallics, 2012, 23: 32
[13] Song G S, Fleury E, Kim S H, et al.Enhancement of the quasicrystal-forming ability in Al-based alloys by Be-addition[J]. J. Alloys Compd., 2002, 342: 251
[14] Chang H J, Fleury E, Song G S, et al. Formation of quasicrystalline phases in Al-rich Al-Mn-Be alloys [J]. J. Non-Cryst. Solids, 2004, 334-335: 12
[15] Zupani? F, Bon?ina T, Kri?man A, et al.Quasicrystalline phase in melt-spun Al-Mn-Be ribbons[J]. J. Alloys Compd., 2008, 452: 343
[16] Zupani? F, Markoli B, Nagli? I, et al.Phases in the Al-corner of the Al-Mn-Be System[J]. Microsc. Microanal., 2013, 19: 1308
[17] Liu G H, Zhang Y, Li X Z, et al.Thermal stabilization treatment and the effect on the microstructure in directionally solidified Ti-52%Al alloy[J]. Acta Metall. Sin., 2014, 50: 329(刘国怀, 张元, 李新中等. 定向凝固Ti-52%Al合金热稳定处理及其对微观组织的影响[J]. 金属学报, 2014, 50: 329)
[18] Luo L S, Liu T, Zhang Y N, et al.Microstructure evolution and growth behoviors of faceted phase in directionally solidified Al-Y alloys I. Microstructure evolution of directionally solidified Al-15%Y hypereutectic alloy[J]. Acta Metall. Sin., 2016, 52: 859(骆良顺, 刘桐, 张延宁等, 定向凝固Al-Y合金组织演化规律及小平面相生长I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52: 859)
[19] Kang H J, Wang T M, Lu Y P, et al.Controllable 3D morphology and growth mechanism of quasicrystalline phase in directionally solidified Al-Mn-Be alloy[J]. J. Mater. Res., 2014, 29: 2547
[20] Zupani? F, Bon?ina T, ?u?tar?i? B, et al.Microstructure of Al-Mn-Be melt-spun ribbons[J]. Mater. Charact., 2008, 59: 1245
[21] Jansson ?.A thermodynamic evaluation of the Al-Mn system[J]. Metall. Trans., 1992, 23A: 2953
[22] Raynor G V, Faulkner C R, Noden J D, et al.Ternary alloys formed by aluminium, transitional metals and divalent metals[J]. Acta Metall., 1953, 1: 629
[23] Kim S H, Song G S, Fleury E, et al.Icosahedral quasicrystalline and hexagonal approximant phases in the Al-Mn-Be alloy system[J]. Philos. Mag., 2002, 82A: 1495
[24] Kreiner G, Franzen H F.The crystal structure of λ-Al4Mn[J]. J. Alloys Compd., 1997, 261: 83
[25] Kelly P M, Ren H P, Qiu D, et al.Identifying close-packed planes in complex crystal structures[J]. Acta Mater., 2010, 58: 3091
[26] Robinson K.The structure of β(AlMnSi)-Mn3SiAl9[J]. Acta Cryst., 1952, 5: 397
[27] Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification [M]. Beijing: Higher Education Press, 2010: 59(Kurz W,Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 北京: 高等教育出版社, 2010: 59)
[28] B?gels G, Buijnsters J G, Verhaegen S A C, et al. Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals[J]. J. Cryst. Growth, 1999, 203: 554
[29] Fleury E, Chang H J, Kim D H.Heterogeneous nucleation of icosahedral phase from FCC phase in cast Al87Mn4Si2Be7 alloy[J]. Philos. Mag., 2006, 86: 349
[30] Carrabine J A.Ternary AlMnBe4 phases in commercially pure beryllium[J]. J. Nucl. Mater., 1963, 8: 278
[31] Li C, Wu Y Y, Li H, et al.Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys[J]. Acta Mater., 2011, 59: 1058
[32] Hamilton D R, Seidensticker R G.Propagation mechanism of germanium dendrites[J]. J. Appl. Phys., 1960, 31: 1165
[33] Kang H J.Growth behaviour of primary-crystalline phases and mechanical properties of directionally solidified Al-Mn-(Be) alloys [D]. Harbin: Harbin Institute of Technology, 2013(康慧君. 定向凝固Al-Mn-(Be)合金先结晶相生长行为及力学性能 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[34] Singh A, Watanabe M, Kato A, et al.Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application[J]. Mater. Sci. Eng., 2004, A385: 382
[35] Lloyd D J.Particle reinforced aluminium and magnesium matrix composites[J]. Int. Mater. Rev., 1994, 39: 1
[36] Kang H J, Wu S P, Li X Z, et al.Improvement of microstructure and mechanical properties of Mg-8Gd-3Y by adding Mg3Zn6Y icosahedral phase alloy[J]. Mater. Sci. Eng. 2011, A528: 5585
[37] Zhang K Y, Bigot J, Chevalier J P, et al.Dodecahedral-shaped quasicrystalline precipitates in dilute Al-Mn solid solutions[J]. Philos. Mag., 1988, 58B: 1
[38] Ohashi T, Dai L, Fukatsu N, et al.Precipitation of quasicrystalline phase in rapidly solidified Al-Mn-Zr alloys[J]. Scr. Metall., 1986, 20: 1241
[39] Loiseau A, Lapasset G.Relations between quasicrystals and crystalline phases in Al-Li-Cu-Mg alloys: A new class of approximant structures[J]. Philos. Mag. Lett., 1987, 56: 165
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.